THE 1989 ASIAN PACIFIC MATHEMATICAL OLYMPIAD

Time allowed: 4 hours
NO calculators are to be used.
Each question is worth seven points.

Question 1

Let $x_{1}, x_{2}, \ldots, x_{n}$ be positive real numbers, and let

$$
S=x_{1}+x_{2}+\cdots+x_{n}
$$

Prove that

$$
\left(1+x_{1}\right)\left(1+x_{2}\right) \cdots\left(1+x_{n}\right) \leq 1+S+\frac{S^{2}}{2!}+\frac{S^{3}}{3!}+\cdots+\frac{S^{n}}{n!}
$$

Question 2

Prove that the equation

$$
6\left(6 a^{2}+3 b^{2}+c^{2}\right)=5 n^{2}
$$

has no solutions in integers except $a=b=c=n=0$.

Question 3

Let A_{1}, A_{2}, A_{3} be three points in the plane, and for convenience, let $A_{4}=A_{1}, A_{5}=A_{2}$. For $n=1,2$, and 3 , suppose that B_{n} is the midpoint of $A_{n} A_{n+1}$, and suppose that C_{n} is the midpoint of $A_{n} B_{n}$. Suppose that $A_{n} C_{n+1}$ and $B_{n} A_{n+2}$ meet at D_{n}, and that $A_{n} B_{n+1}$ and $C_{n} A_{n+2}$ meet at E_{n}. Calculate the ratio of the area of triangle $D_{1} D_{2} D_{3}$ to the area of triangle $E_{1} E_{2} E_{3}$.

Question 4

Let S be a set consisting of m pairs (a, b) of positive integers with the property that $1 \leq a<b \leq n$. Show that there are at least

$$
4 m \cdot \frac{\left(m-\frac{n^{2}}{4}\right)}{3 n}
$$

triples (a, b, c) such that $(a, b),(a, c)$, and (b, c) belong to S .

Question 5

Determine all functions f from the reals to the reals for which
(1) $f(x)$ is strictly increasing,
(2) $f(x)+g(x)=2 x$ for all real x,
where $g(x)$ is the composition inverse function to $f(x)$. (Note: f and g are said to be composition inverses if $f(g(x))=x$ and $g(f(x))=x$ for all real x.)

