THE 1989 ASIAN PACIFIC MATHEMATICAL OLYMPIAD

Time allowed: 4 hours

NO calculators are to be used.

Each question is worth seven points.

Question 1

Let x_1, x_2, \ldots, x_n be positive real numbers, and let

$$S = x_1 + x_2 + \dots + x_n.$$

Prove that

$$(1+x_1)(1+x_2)\cdots(1+x_n) \le 1+S+\frac{S^2}{2!}+\frac{S^3}{3!}+\cdots+\frac{S^n}{n!}$$
.

Question 2

Prove that the equation

$$6(6a^2 + 3b^2 + c^2) = 5n^2$$

has no solutions in integers except a = b = c = n = 0.

Question 3

Let A_1 , A_2 , A_3 be three points in the plane, and for convenience, let $A_4 = A_1$, $A_5 = A_2$. For n = 1, 2, and 3, suppose that B_n is the midpoint of $A_n A_{n+1}$, and suppose that C_n is the midpoint of $A_n B_n$. Suppose that $A_n C_{n+1}$ and $B_n A_{n+2}$ meet at D_n , and that $A_n B_{n+1}$ and $C_n A_{n+2}$ meet at E_n . Calculate the ratio of the area of triangle $D_1 D_2 D_3$ to the area of triangle $E_1 E_2 E_3$.

Question 4

Let S be a set consisting of m pairs (a, b) of positive integers with the property that $1 \le a < b \le n$. Show that there are at least

$$4m \cdot \frac{\left(m - \frac{n^2}{4}\right)}{3n}$$

triples (a, b, c) such that (a, b), (a, c), and (b, c) belong to S.

Question 5

Determine all functions f from the reals to the reals for which

- (1) f(x) is strictly increasing,
- (2) f(x) + g(x) = 2x for all real x,

where g(x) is the composition inverse function to f(x). (Note: f and g are said to be composition inverses if f(g(x)) = x and g(f(x)) = x for all real x.)