THE 1993 ASIAN PACIFIC MATHEMATICAL OLYMPIAD

Time allowed: 4 hours
NO calculators are to be used.
Each question is worth seven points.

Question 1

Let $A B C D$ be a quadrilateral such that all sides have equal length and angle $A B C$ is 60 deg. Let l be a line passing through D and not intersecting the quadrilateral (except at D). Let E and F be the points of intersection of l with $A B$ and $B C$ respectively. Let M be the point of intersection of $C E$ and $A F$.
Prove that $C A^{2}=C M \times C E$.

Question 2

Find the total number of different integer values the function

$$
f(x)=[x]+[2 x]+\left[\frac{5 x}{3}\right]+[3 x]+[4 x]
$$

takes for real numbers x with $0 \leq x \leq 100$.

Question 3

Let

$$
\begin{aligned}
f(x) & =a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0} \text { and } \\
g(x) & =c_{n+1} x^{n+1}+c_{n} x^{n}+\cdots+c_{0}
\end{aligned}
$$

be non-zero polynomials with real coefficients such that $g(x)=(x+r) f(x)$ for some real number r. If $a=\max \left(\left|a_{n}\right|, \ldots,\left|a_{0}\right|\right)$ and $c=\max \left(\left|c_{n+1}\right|, \ldots,\left|c_{0}\right|\right)$, prove that $\frac{a}{c} \leq n+1$.

Question 4

Determine all positive integers n for which the equation

$$
x^{n}+(2+x)^{n}+(2-x)^{n}=0
$$

has an integer as a solution.

Question 5

Let $P_{1}, P_{2}, \ldots, P_{1993}=P_{0}$ be distinct points in the $x y$-plane with the following properties:
(i) both coordinates of P_{i} are integers, for $i=1,2, \ldots, 1993$;
(ii) there is no point other than P_{i} and P_{i+1} on the line segment joining P_{i} with P_{i+1} whose coordinates are both integers, for $i=0,1, \ldots, 1992$.
Prove that for some $i, 0 \leq i \leq 1992$, there exists a point Q with coordinates $\left(q_{x}, q_{y}\right)$ on the line segment joining P_{i} with P_{i+1} such that both $2 q_{x}$ and $2 q_{y}$ are odd integers.

