## THE 1995 ASIAN PACIFIC MATHEMATICAL OLYMPIAD

Time allowed: 4 hours
NO calculators are to be used.
Each question is worth seven points.

## Question 1

Determine all sequences of real numbers $a_{1}, a_{2}, \ldots, a_{1995}$ which satisfy:

$$
2 \sqrt{a_{n}-(n-1)} \geq a_{n+1}-(n-1), \text { for } n=1,2, \ldots 1994,
$$

and

$$
2 \sqrt{a_{1995}-1994} \geq a_{1}+1
$$

## Question 2

Let $a_{1}, a_{2}, \ldots, a_{n}$ be a sequence of integers with values between 2 and 1995 such that:
(i) Any two of the $a_{i}$ 's are realtively prime,
(ii) Each $a_{i}$ is either a prime or a product of primes.

Determine the smallest possible values of $n$ to make sure that the sequence will contain a prime number.

## Question 3

Let $P Q R S$ be a cyclic quadrilateral such that the segments $P Q$ and $R S$ are not parallel. Consider the set of circles through $P$ and $Q$, and the set of circles through $R$ and $S$. Determine the set $A$ of points of tangency of circles in these two sets.

## Question 4

Let $C$ be a circle with radius $R$ and centre $O$, and $S$ a fixed point in the interior of $C$. Let $A A^{\prime}$ and $B B^{\prime}$ be perpendicular chords through $S$. Consider the rectangles $S A M B, S B N^{\prime} A^{\prime}$, $S A^{\prime} M^{\prime} B^{\prime}$, and $S B^{\prime} N A$. Find the set of all points $M, N^{\prime}, M^{\prime}$, and $N$ when $A$ moves around the whole circle.

## Question 5

Find the minimum positive integer $k$ such that there exists a function $f$ from the set $\mathbb{Z}$ of all integers to $\{1,2, \ldots k\}$ with the property that $f(x) \neq f(y)$ whenever $|x-y| \in\{5,7,12\}$.

