THE 1996 ASIAN PACIFIC MATHEMATICAL OLYMPIAD

Time allowed: 4 hours
NO calculators are to be used.
Each question is worth seven points.

Question 1

Let $A B C D$ be a quadrilateral $A B=B C=C D=D A$. Let $M N$ and $P Q$ be two segments perpendicular to the diagonal $B D$ and such that the distance between them is $d>B D / 2$, with $M \in A D, N \in D C, P \in A B$, and $Q \in B C$. Show that the perimeter of hexagon $A M N C Q P$ does not depend on the position of $M N$ and $P Q$ so long as the distance between them remains constant.

Question 2

Let m and n be positive integers such that $n \leq m$. Prove that

$$
2^{n} n!\leq \frac{(m+n)!}{(m-n)!} \leq\left(m^{2}+m\right)^{n}
$$

Question 3

Let $P_{1}, P_{2}, P_{3}, P_{4}$ be four points on a circle, and let I_{1} be the incentre of the triangle $P_{2} P_{3} P_{4}$; I_{2} be the incentre of the triangle $P_{1} P_{3} P_{4} ; I_{3}$ be the incentre of the triangle $P_{1} P_{2} P_{4} ; I_{4}$ be the incentre of the triangle $P_{1} P_{2} P_{3}$. Prove that $I_{1}, I_{2}, I_{3}, I_{4}$ are the vertices of a rectangle.

Question 4

The National Marriage Council wishes to invite n couples to form 17 discussion groups under the following conditions:

1. All members of a group must be of the same sex; i.e. they are either all male or all female.
2. The difference in the size of any two groups is 0 or 1 .
3. All groups have at least 1 member.
4. Each person must belong to one and only one group.

Find all values of $n, n \leq 1996$, for which this is possible. Justify your answer.

Question 5

Let a, b, c be the lengths of the sides of a triangle. Prove that

$$
\sqrt{a+b-c}+\sqrt{b+c-a}+\sqrt{c+a-b} \leq \sqrt{a}+\sqrt{b}+\sqrt{c}
$$

and determine when equality occurs.

