THE 1997 ASIAN PACIFIC MATHEMATICAL OLYMPIAD

Time allowed: 4 hours
NO calculators are to be used.
Each question is worth seven points.

Question 1

Given

$$
S=1+\frac{1}{1+\frac{1}{3}}+\frac{1}{1+\frac{1}{3}+\frac{1}{6}}+\cdots+\frac{1}{1+\frac{1}{3}+\frac{1}{6}+\cdots+\frac{1}{1993006}},
$$

where the denominators contain partial sums of the sequence of reciprocals of triangular numbers (i.e. $k=n(n+1) / 2$ for $n=1,2, \ldots, 1996)$. Prove that $S>1001$.

Question 2

Find an integer n, where $100 \leq n \leq 1997$, such that

$$
\frac{2^{n}+2}{n}
$$

is also an integer.

Question 3

Let $A B C$ be a triangle inscribed in a circle and let

$$
l_{a}=\frac{m_{a}}{M_{a}}, \quad l_{b}=\frac{m_{b}}{M_{b}}, \quad l_{c}=\frac{m_{c}}{M_{c}}
$$

where m_{a}, m_{b}, m_{c} are the lengths of the angle bisectors (internal to the triangle) and M_{a}, M_{b}, M_{c} are the lengths of the angle bisectors extended until they meet the circle. Prove that

$$
\frac{l_{a}}{\sin ^{2} A}+\frac{l_{b}}{\sin ^{2} B}+\frac{l_{c}}{\sin ^{2} C} \geq 3
$$

and that equality holds iff $A B C$ is an equilateral triangle.

Question 4

Triangle $A_{1} A_{2} A_{3}$ has a right angle at A_{3}. A sequence of points is now defined by the following iterative process, where n is a positive integer. From $A_{n}(n \geq 3)$, a perpendicular line is drawn to meet $A_{n-2} A_{n-1}$ at A_{n+1}.
(a) Prove that if this process is continued indefinitely, then one and only one point P is interior to every triangle $A_{n-2} A_{n-1} A_{n}, n \geq 3$.
(b) Let A_{1} and A_{3} be fixed points. By considering all possible locations of A_{2} on the plane, find the locus of P.

Question 5

Suppose that n people $A_{1}, A_{2}, \ldots, A_{n},(n \geq 3)$ are seated in a circle and that A_{i} has a_{i}
objects such that

$$
a_{1}+a_{2}+\cdots+a_{n}=n N
$$

where N is a positive integer. In order that each person has the same number of objects, each person A_{i} is to give or to receive a certain number of objects to or from its two neighbours A_{i-1} and A_{i+1}. (Here A_{n+1} means A_{1} and A_{n} means A_{0}.) How should this redistribution be performed so that the total number of objects transferred is minimum?

