10th Asian Pacific Mathematics Olympiad

March 1998

Time allowed: 4 hours.
No calculators to be used.
Each question is worth 7 points.

1. Let F be the set of all n-tuples $\left(A_{1}, A_{2}, \ldots, A_{n}\right)$ where each $A_{i}, i=1,2, \ldots, n$ is a subset of $\{1,2, \ldots, 1998\}$. Let $|A|$ denote the number of elements of the set A.
Find the number $\sum_{\left(A_{1}, A_{2}, \ldots, A_{n}\right)}\left|A_{1} \cup A_{2} \cup \ldots \cup A_{n}\right|$.
2. Show that for any positive integers a and $b,(36 a+b)(a+36 b)$ cannot be a power of 2 .
3. Let a, b, c be positive real numbers. Prove that $\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right) \geq 2\left(1+\frac{a+b+c}{\sqrt[3]{a b c}}\right)$.
4. Let $A B C$ be a triangle and D the foot of the altitude from A. Let E and F be on a line through D such that $A E$ is perpendicular to $B E, A F$ is perpendicular to $C F$, and E and F are different from D. Let M and N be the midpoints of the line segments $B C$ and $E F$, respectively. Prove that $A N$ is perpendicular to $N M$.
5. Determine the largest of all integers n with the property that n is divisible by all positive integers that are less than $\sqrt[3]{n}$.

END OF PAPER

