XIV Asian Pacific Mathematics Olympiad March 2002

Time allowed: 4 hours
No calculators are to be used
Each question is worth 7 points

Problem 1.

Let $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$ be a sequence of non-negative integers, where n is a positive integer. Let

$$
A_{n}=\frac{a_{1}+a_{2}+\cdots+a_{n}}{n}
$$

Prove that

$$
a_{1}!a_{2}!\ldots a_{n}!\geq\left(\left\lfloor A_{n}\right\rfloor!\right)^{n}
$$

where $\left\lfloor A_{n}\right\rfloor$ is the greatest integer less than or equal to A_{n}, and $a!=1 \times 2 \times \cdots \times a$ for $a \geq 1$ (and $0!=1$). When does equality hold?

Problem 2.

Find all positive integers a and b such that

$$
\frac{a^{2}+b}{b^{2}-a} \text { and } \frac{b^{2}+a}{a^{2}-b}
$$

are both integers.

Problem 3.

Let $A B C$ be an equilateral triangle. Let P be a point on the side $A C$ and Q be a point on the side $A B$ so that both triangles $A B P$ and $A C Q$ are acute. Let R be the orthocentre of triangle $A B P$ and S be the orthocentre of triangle $A C Q$. Let T be the point common to the segments $B P$ and $C Q$. Find all possible values of $\angle C B P$ and $\angle B C Q$ such that triangle $T R S$ is equilateral.

Problem 4.

Let x, y, z be positive numbers such that

$$
\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1
$$

Show that

$$
\sqrt{x+y z}+\sqrt{y+z x}+\sqrt{z+x y} \geq \sqrt{x y z}+\sqrt{x}+\sqrt{y}+\sqrt{z}
$$

Problem 5.

Let \mathbf{R} denote the set of all real numbers. Find all functions f from \mathbf{R} to \mathbf{R} satisfying:
(i) there are only finitely many s in \mathbf{R} such that $f(s)=0$, and
(ii) $f\left(x^{4}+y\right)=x^{3} f(x)+f(f(y))$ for all x, y in \mathbf{R}.

