XV Asian Pacific Mathematics Olympiad March 2003

Time allowed: 4 hours
No calculators are to be used
Each question is worth 7 points

Problem 1.

Let a, b, c, d, e, f be real numbers such that the polynomial

$$
p(x)=x^{8}-4 x^{7}+7 x^{6}+a x^{5}+b x^{4}+c x^{3}+d x^{2}+e x+f
$$

factorises into eight linear factors $x-x_{i}$, with $x_{i}>0$ for $i=1,2, \ldots, 8$. Determine all possible values of f.

Problem 2.

Suppose $A B C D$ is a square piece of cardboard with side length a. On a plane are two parallel lines ℓ_{1} and ℓ_{2}, which are also a units apart. The square $A B C D$ is placed on the plane so that sides $A B$ and $A D$ intersect ℓ_{1} at E and F respectively. Also, sides $C B$ and $C D$ intersect ℓ_{2} at G and H respectively. Let the perimeters of $\triangle A E F$ and $\triangle C G H$ be m_{1} and m_{2} respectively. Prove that no matter how the square was placed, $m_{1}+m_{2}$ remains constant.

Problem 3.

Let $k \geq 14$ be an integer, and let p_{k} be the largest prime number which is strictly less than k. You may assume that $p_{k} \geq 3 k / 4$. Let n be a composite integer. Prove:
(a) if $n=2 p_{k}$, then n does not divide $(n-k)$!;
(b) if $n>2 p_{k}$, then n divides $(n-k)$!.

Problem 4.

Let a, b, c be the sides of a triangle, with $a+b+c=1$, and let $n \geq 2$ be an integer. Show that

$$
\sqrt[n]{a^{n}+b^{n}}+\sqrt[n]{b^{n}+c^{n}}+\sqrt[n]{c^{n}+a^{n}}<1+\frac{\sqrt[n]{2}}{2}
$$

Problem 5.

Given two positive integers m and n, find the smallest positive integer k such that among any k people, either there are $2 m$ of them who form m pairs of mutually acquainted people or there are $2 n$ of them forming n pairs of mutually unacquainted people.

