XVI Asian Pacific Mathematics Olympiad March 2004

Time allowed: 4 hours
No calculators are to be used
Each question is worth 7 points

Problem 1.

Determine all finite nonempty sets S of positive integers satisfying

$$
\frac{i+j}{(i, j)} \quad \text { is an element of } S \text { for all } i, j \text { in } S
$$

where (i, j) is the greatest common divisor of i and j.

Problem 2.

Let O be the circumcentre and H the orthocentre of an acute triangle $A B C$. Prove that the area of one of the triangles $\mathrm{AOH}, \mathrm{BOH}$ and COH is equal to the sum of the areas of the other two.

Problem 3.

Let a set S of 2004 points in the plane be given, no three of which are collinear. Let \mathcal{L} denote the set of all lines (extended indefinitely in both directions) determined by pairs of points from the set. Show that it is possible to colour the points of S with at most two colours, such that for any points p, q of S, the number of lines in \mathcal{L} which separate p from q is odd if and only if p and q have the same colour.
Note: A line ℓ separates two points p and q if p and q lie on opposite sides of ℓ with neither point on ℓ.

Problem 4.

For a real number x, let $\lfloor x\rfloor$ stand for the largest integer that is less than or equal to x. Prove that

$$
\left\lfloor\frac{(n-1)!}{n(n+1)}\right\rfloor
$$

is even for every positive integer n.

Problem 5.

Prove that

$$
\left(a^{2}+2\right)\left(b^{2}+2\right)\left(c^{2}+2\right) \geq 9(a b+b c+c a)
$$

for all real numbers $a, b, c>0$.

