
XIX Asian Pacific Mathematics Olympiad

Problem 1. Let S be a set of 9 distinct integers all of whose prime factors are at most 3.
Prove that S contains 3 distinct integers such that their product is a perfect cube.

Solution. Without loss of generality, we may assume that S contains only positive integers.
Let

S = {2ai3bi | ai, bi ∈ Z, ai, bi ≥ 0, 1 ≤ i ≤ 9}.
It suffices to show that there are 1 ≤ i1, i2, i3 ≤ 9 such that

ai1 + ai2 + ai3 ≡ bi1 + bi2 + bi3 ≡ 0 (mod 3). (†)

For n = 2a3b ∈ S, let’s call (a (mod 3), b (mod 3)) the type of n. Then there are 9 possible
types :

(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2).

Let N(i, j) be the number of integers in S of type (i, j). We obtain 3 distinct integers
whose product is a perfect cube when

(1) N(i, j) ≥ 3 for some i, j, or

(2) N(i, 0)N(i, 1)N(i, 2) 6= 0 for some i = 0, 1, 2, or

(3) N(0, j)N(1, j)N(2, j) 6= 0 for some j = 0, 1, 2, or

(4) N(i1, j1)N(i2, j2)N(i3, j3) 6= 0, where {i1, i2, i3} = {j1, j2, j3} = {0, 1, 2}.
Assume that none of the conditions (1)∼(3) holds. Since N(i, j) ≤ 2 for all (i, j), there

are at least five N(i, j)’s that are nonzero. Furthermore, among those nonzero N(i, j)’s, no
three have the same i nor the same j. Using these facts, one may easily conclude that the
condition (4) should hold. (For example, if one places each nonzero N(i, j) in the (i, j)-th
box of a regular 3 × 3 array of boxes whose rows and columns are indexed by 0,1 and 2,
then one can always find three boxes, occupied by at least one nonzero N(i, j), whose rows
and columns are all distinct. This implies (4).)



Second solution. Up to (†), we do the same as above and get 9 possible types :

(a (mod 3), b (mod 3)) = (0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)

for n = 2a3b ∈ S.
Note that (i) among any 5 integers, there exist 3 whose sum is 0 (mod 3), and that (ii)

if i, j, k ∈ {0, 1, 2}, then i+j+k ≡ 0 (mod 3) if and only if i = j = k or {i, j, k} = {0, 1, 2}.
Let’s define

T : the set of types of the integers in S ;
N(i) : the number of integers in S of the type (i, ·) ;
M(i) : the number of integers j ∈ {0, 1, 2} such that (i, j) ∈ T .

If N(i) ≥ 5 for some i, the result follows from (i). Otherwise, for some permutation (i, j, k)
of (0, 1, 2),

N(i) ≥ 3, N(j) ≥ 3, N(k) ≥ 1.

If M(i) or M(j) is 1 or 3, the result follows from (ii). Otherwise M(i) = M(j) = 2. Then
either

(i, x), (i, y), (j, x), (j, y) ∈ T or (i, x), (i, y), (j, x), (j, z) ∈ T

for some permutation (x, y, z) of (0, 1, 2). Since N(k) ≥ 1, at least one of (k, x), (k, y) and
(k, z) contained in T . Therefore, in any case, the result follows from (ii). (For example, if
(k, y) ∈ T , then take (i, y), (j, y), (k, y) or (i, x), (j, z), (k, y) from T .)



Problem 2. Let ABC be an acute angled triangle with ∠BAC = 60◦ and AB > AC. Let
I be the incenter, and H the orthocenter of the triangle ABC. Prove that

2∠AHI = 3∠ABC.

Solution. Let D be the intersection point of the lines AH and BC. Let K be the
intersection point of the circumcircle O of the triangle ABC and the line AH. Let the line
through I perpendicular to BC meet BC and the minor arc BC of the circumcircle O at
E and N , respectively. We have

∠BIC = 180◦ − (∠IBC + ∠ICB) = 180◦ − 1

2
(∠ABC + ∠ACB) = 90◦ +

1

2
∠BAC = 120◦

and also ∠BNC = 180◦ − ∠BAC = 120◦ = ∠BIC. Since IN ⊥ BC, the quadrilateral
BICN is a kite and thus IE = EN .

Now, since H is the orthocenter of the triangle ABC, HD = DK. Also because
ED ⊥ IN and ED ⊥ HK, we conclude that IHKN is an isosceles trapezoid with
IH = NK.

Hence
∠AHI = 180◦ − ∠IHK = 180◦ − ∠AKN = ∠ABN.

Since IE = EN and BE ⊥ IN , the triangles IBE and NBE are congruent. Therefore

∠NBE = ∠IBE = ∠IBC = ∠IBA =
1

2
∠ABC

and thus

∠AHI = ∠ABN =
3

2
∠ABC.

Second solution. Let P,Q and R be the intersection points of BH, CH and AH with
AC, AB and BC, respectively. Then we have ∠IBH = ∠ICH. Indeed,

∠IBH = ∠ABP − ∠ABI = 30◦ − 1

2
∠ABC

and

∠ICH = ∠ACI − ∠ACH =
1

2
∠ACB − 30◦ = 30◦ − 1

2
∠ABC,

because ∠ABH = ∠ACH = 30◦ and ∠ACB+∠ABC = 120◦. (Note that ∠ABP > ∠ABI
and ∠ACI > ∠ACH because AB is the longest side of the triangle ABC under the given
conditions.) Therefore BIHC is a cyclic quadrilateral and thus

∠BHI = ∠BCI =
1

2
∠ACB.



On the other hand,

∠BHR = 90◦ − ∠HBR = 90◦ − (∠ABC − ∠ABH) = 120◦ − ∠ABC.

Therefore,

∠AHI = 180◦ − ∠BHI − ∠BHR = 60◦ − 1

2
∠ACB + ∠ABC

= 60◦ − 1

2
(120◦ − ∠ABC) + ∠ABC =

3

2
∠ABC.



Problem 3. Consider n disks C1, C2, . . . , Cn in a plane such that for each 1 ≤ i < n, the
center of Ci is on the circumference of Ci+1, and the center of Cn is on the circumference
of C1. Define the score of such an arrangement of n disks to be the number of pairs (i, j)
for which Ci properly contains Cj. Determine the maximum possible score.

Solution. The answer is (n− 1)(n− 2)/2.
Let’s call a set of n disks satisfying the given conditions an n-configuration. For an n-

configuration C = {C1, . . . , Cn}, let SC = {(i, j) | Ci properly contains Cj }. So, the score
of an n-configuration C is |SC|.

We’ll show that (i) there is an n-configuration C for which |SC| = (n− 1)(n− 2)/2, and
that (ii) |SC| ≤ (n− 1)(n− 2)/2 for any n-configuration C.

Let C1 be any disk. Then for i = 2, . . . , n − 1, take Ci inside Ci−1 so that the cir-
cumference of Ci contains the center of Ci−1. Finally, let Cn be a disk whose center is on
the circumference of C1 and whose circumference contains the center of Cn−1. This gives
SC = {(i, j) | 1 ≤ i < j ≤ n− 1} of size (n− 1)(n− 2)/2, which proves (i).

For any n-configuration C, SC must satisfy the following properties:

(1) (i, i) 6∈ SC ,

(2) (i + 1, i) 6∈ SC, (1, n) 6∈ SC ,

(3) if (i, j), (j, k) ∈ SC, then (i, k) ∈ SC ,

(4) if (i, j) ∈ SC, then (j, i) 6∈ SC .

Now we show that a set G of ordered pairs of integers between 1 and n, satisfying the
conditions (1)∼(4), can have no more than (n− 1)(n− 2)/2 elements. Suppose that there
exists a set G that satisfies the conditions (1)∼(4), and has more than (n − 1)(n − 2)/2
elements. Let n be the least positive integer with which there exists such a set G. Note
that G must have (i, i + 1) for some 1 ≤ i ≤ n or (n, 1), since otherwise G can have at
most (

n

2

)
− n =

n(n− 3)

2
<

(n− 1)(n− 2)

2

elements. Without loss of generality we may assume that (n, 1) ∈ G. Then (1, n− 1) 6∈ G,
since otherwise the condition (3) yields (n, n−1) ∈ G contradicting the condition (2). Now
let G′ = {(i, j) ∈ G | 1 ≤ i, j ≤ n− 1}, then G′ satisfies the conditions (1)∼(4), with n− 1.

We now claim that |G−G′| ≤ n− 2 :

Suppose that |G−G′| > n− 2, then |G−G′| = n− 1 and hence for each 1 ≤ i ≤ n− 1,
either (i, n) or (n, i) must be in G. We already know that (n, 1) ∈ G and (n − 1, n) ∈ G
(because (n, n − 1) 6∈ G) and this implies that (n, n − 2) 6∈ G and (n − 2, n) ∈ G. If we
keep doing this process, we obtain (1, n) ∈ G, which is a contradiction.



Since |G−G′| ≤ n− 2, we obtain

|G′| ≥ (n− 1)(n− 2)

2
− (n− 2) =

(n− 2)(n− 3)

2
.

This, however, contradicts the minimality of n, and hence proves (ii).



Problem 4. Let x, y and z be positive real numbers such that
√

x +
√

y +
√

z = 1. Prove
that

x2 + yz√
2x2(y + z)

+
y2 + zx√
2y2(z + x)

+
z2 + xy√
2z2(x + y)

≥ 1.

Solution. We first note that

x2 + yz√
2x2(y + z)

=
x2 − x(y + z) + yz√

2x2(y + z)
+

x(y + z)√
2x2(y + z)

=
(x− y)(x− z)√

2x2(y + z)
+

√
y + z

2

≥ (x− y)(x− z)√
2x2(y + z)

+

√
y +

√
z

2
. (1)

Similarly, we have

y2 + zx√
2y2(z + x)

≥ (y − z)(y − x)√
2y2(z + x)

+

√
z +

√
x

2
, (2)

z2 + xy√
2z2(x + y)

≥ (z − x)(z − y)√
2z2(x + y)

+

√
x +

√
y

2
. (3)

We now add (1)∼(3) to get

x2 + yz√
2x2(y + z)

+
y2 + zx√
2y2(z + x)

+
z2 + xy√
2z2(x + y)

≥ (x− y)(x− z)√
2x2(y + z)

+
(y − z)(y − x)√

2y2(z + x)
+

(z − x)(z − y)√
2z2(x + y)

+
√

x +
√

y +
√

z

=
(x− y)(x− z)√

2x2(y + z)
+

(y − z)(y − x)√
2y2(z + x)

+
(z − x)(z − y)√

2z2(x + y)
+ 1.

Thus, it suffices to show that

(x− y)(x− z)√
2x2(y + z)

+
(y − z)(y − x)√

2y2(z + x)
+

(z − x)(z − y)√
2z2(x + y)

≥ 0. (4)

Now, assume without loss of generality, that x ≥ y ≥ z. Then we have

(x− y)(x− z)√
2x2(y + z)

≥ 0



and

(z − x)(z − y)√
2z2(x + y)

+
(y − z)(y − x)√

2y2(z + x)
=

(y − z)(x− z)√
2z2(x + y)

− (y − z)(x− y)√
2y2(z + x)

≥ (y − z)(x− y)√
2z2(x + y)

− (y − z)(x− y)√
2y2(z + x)

= (y − z)(x− y)

(
1√

2z2(x + y)
− 1√

2y2(z + x)

)
.

The last quantity is non-negative due to the fact that

y2(z + x) = y2z + y2x ≥ yz2 + z2x = z2(x + y).

This completes the proof.

Second solution. By Cauchy-Schwarz inequality,
(

x2

√
2x2(y + z)

+
y2

√
2y2(z + x)

+
z2

√
2z2(x + y)

)
(5)

× (
√

2(y + z) +
√

2(z + x) +
√

2(x + y)) ≥ (
√

x +
√

y +
√

z)2 = 1,

and
(

yz√
2x2(y + z)

+
zx√

2y2(z + x)
+

xy√
2z2(x + y)

)
(6)

× (
√

2(y + z) +
√

2(z + x) +
√

2(x + y)) ≥
(√

yz

x
+

√
zx

y
+

√
xy

z

)2

.

We now combine (5) and (6) to find

(
x2 + yz√
2x2(y + z)

+
y2 + zx√
2y2(z + x)

+
z2 + xy√
2z2(x + y)

)

× (
√

2(x + y) +
√

2(y + z) +
√

2(z + x))

≥ 1 +

(√
yz

x
+

√
zx

y
+

√
xy

z

)2

≥ 2

(√
yz

x
+

√
zx

y
+

√
xy

z

)
.

Thus, it suffices to show that

2

(√
yz

x
+

√
zx

y
+

√
xy

z

)
≥

√
2(y + z) +

√
2(z + x) +

√
2(x + y) . (7)

Consider the following inequality using AM-GM inequality

[√
yz

x
+

(
1

2

√
zx

y
+

1

2

√
xy

z

)]2

≥ 4

√
yz

x

(
1

2

√
zx

y
+

1

2

√
xy

z

)
= 2(y + z),



or equivalently √
yz

x
+

(
1

2

√
zx

y
+

1

2

√
xy

z

)
≥

√
2(y + z) .

Similarly, we have

√
zx

y
+

(
1

2

√
xy

z
+

1

2

√
yz

x

)
≥

√
2(z + x) ,

√
xy

z
+

(
1

2

√
yz

x
+

1

2

√
zx

y

)
≥

√
2(x + y) .

Adding the last three inequalities, we get

2

(√
yz

x
+

√
zx

y
+

√
xy

z

)
≥

√
2(y + z) +

√
2(z + x) +

√
2(x + y) .

This completes the proof.



Problem 5. A regular (5 × 5)-array of lights is defective, so that toggling the switch for
one light causes each adjacent light in the same row and in the same column as well as
the light itself to change state, from on to off, or from off to on. Initially all the lights are
switched off. After a certain number of toggles, exactly one light is switched on. Find all
the possible positions of this light.

Solution. We assign the following first labels to the 25 positions of the lights:

1 1 0 1 1
0 0 0 0 0
1 1 0 1 1
0 0 0 0 0
1 1 0 1 1

For each on-off combination of lights in the array, define its first value to be the sum
of the first labels of those positions at which the lights are switched on. It is easy to
check that toggling any switch always leads to an on-off combination of lights whose first
value has the same parity(the remainder when divided by 2) as that of the previous on-off
combination.

The 90◦ rotation of the first labels gives us another labels (let us call it the second
labels) which also makes the parity of the second value(the sum of the second labels of
those positions at which the lights are switched on) invariant under toggling.

1 0 1 0 1
1 0 1 0 1
0 0 0 0 0
1 0 1 0 1
1 0 1 0 1

Since the parity of the first and the second values of the initial status is 0, after certain
number of toggles the parity must remain unchanged with respect to the first labels and
the second labels as well. Therefore, if exactly one light is on after some number of toggles,
the label of that position must be 0 with respect to both labels. Hence according to the
above pictures, the possible positions are the ones marked with ∗i’s in the following picture:

∗2 ∗1

∗0

∗3 ∗4



Now we demonstrate that all five positions are possible :

Toggling the positions checked by t (the order of toggling is irrelevant) in the first
picture makes the center(∗0) the only position with light on and the second picture makes
the position ∗1 the only position with light on. The other ∗i’s can be obtained by rotating
the second picture appropriately.

t t
t

t t t
t t
t t t

t t
t t t t

t
t t t

t


