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Problem 1. Let ABC be a triangle with ∠A < 60◦. Let X and Y be the points on the sides
AB and AC, respectively, such that CA + AX = CB + BX and BA + AY = BC + CY . Let
P be the point in the plane such that the lines PX and PY are perpendicular to AB and
AC, respectively. Prove that ∠BPC < 120◦.

(Solution) Let I be the incenter of △ABC, and let the feet of the perpendiculars from I
to AB and to AC be D and E, respectively. (Without loss of generality, we may assume
that AC is the longest side. Then X lies on the line segment AD. Although P may or
may not lie inside △ABC, the proof below works for both cases. Note that P is on the line
perpendicular to AB passing through X.) Let O be the midpoint of IP , and let the feet of
the perpendiculars from O to AB and to AC be M and N , respectively. Then M and N are
the midpoints of DX and EY , respectively.
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The conditions on the points X and Y yield the equations

AX =
AB + BC − CA

2
and AY =

BC + CA − AB

2
.

From AD = AE =
CA + AB − BC

2
, we obtain

BD = AB − AD = AB − CA + AB − BC

2
=

AB + BC − CA

2
= AX.

Since M is the midpoint of DX, it follows that M is the midpoint of AB. Similarly, N is the
midpoint of AC. Therefore, the perpendicular bisectors of AB and AC meet at O, that is,
O is the circumcenter of △ABC. Since ∠BAC < 60◦, O lies on the same side of BC as the
point A and

∠BOC = 2∠BAC.

We can compute ∠BIC as follows :

∠BIC = 180◦ − ∠IBC − ∠ICB = 180◦ − 1
2
∠ABC − 1

2
∠ACB

= 180◦ − 1
2
(∠ABC + ∠ACB) = 180◦ − 1

2
(180◦ − ∠BAC) = 90◦ +

1
2
∠BAC

It follows from ∠BAC < 60◦ that

2∠BAC < 90◦ +
1
2
∠BAC, i.e., ∠BOC < ∠BIC.

From this it follows that I lies inside the circumcircle of the isosceles triangle BOC because
O and I lie on the same side of BC. However, as O is the midpoint of IP , P must lie outside
the circumcircle of triangle BOC and on the same side of BC as O. Therefore

∠BPC < ∠BOC = 2∠BAC < 120◦.

Remark. If one assumes that ∠A is smaller than the other two, then it is clear that the
line PX (or the line perpendicular to AB at X if P = X) runs through the excenter IC

of the excircle tangent to the side AB. Since 2∠ACIC = ∠ACB and BC < AC, we have
2∠PCB > ∠C. Similarly, 2∠PBC > ∠B. Therefore,

∠BPC = 180◦ − (∠PBC + ∠PCB) < 180◦ −
(

∠B + ∠C

2

)
= 90 +

∠A

2
< 120◦.

In this way, a special case of the problem can be easily proved.
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Problem 2. Students in a class form groups each of which contains exactly three members
such that any two distinct groups have at most one member in common. Prove that, when
the class size is 46, there is a set of 10 students in which no group is properly contained.

(Solution) We let C be the set of all 46 students in the class and let

s := max{ |S| : S ⊆ C such that S contains no group properly }.

Then it suffices to prove that s ≥ 10. (If |S| = s > 10, we may choose a subset of S consisting
of 10 students.)

Suppose that s ≤ 9 and let S be a set of size s in which no group is properly contained.
Take any student, say v, from outside S. Because of the maximality of s, there should be a
group containing the student v and two other students in S. The number of ways to choose
two students from S is (

s

2

)
≤

(
9
2

)
= 36.

On the other hand, there are at least 37 = 46 − 9 students outside of S. Thus, among those
37 students outside, there is at least one student, say u, who does not belong to any group
containing two students in S and one outside. This is because no two distinct groups have two
members in common. But then, S can be enlarged by including u, which is a contradiction.

Remark. One may choose a subset S of C that contains no group properly. Then, assuming
|S| < 10, prove that there is a student outside S, say u, who does not belong to any group
containing two students in S. After enlarging S by including u, prove that the enlarged S
still contains no group properly.
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Problem 3. Let Γ be the circumcircle of a triangle ABC. A circle passing through points
A and C meets the sides BC and BA at D and E, respectively. The lines AD and CE meet
Γ again at G and H, respectively. The tangent lines of Γ at A and C meet the line DE at L
and M , respectively. Prove that the lines LH and MG meet at Γ.

(Solution) Let MG meet Γ at P . Since ∠MCD = ∠CAE and ∠MDC = ∠CAE, we have
MC = MD. Thus

MD2 = MC2 = MG · MP

and hence MD is tangent to the circumcircle of △DGP . Therefore ∠DGP = ∠EDP .
Let Γ′ be the circumcircle of △BDE. If B = P , then, since ∠BGD = ∠BDE, the tangent

lines of Γ′ and Γ at B should coincide, that is Γ′ is tangent to Γ from inside. Let B ̸= P .
If P lies in the same side of the line BC as G, then we have

∠EDP + ∠ABP = 180◦

because ∠DGP + ∠ABP = 180◦. That is, the quadrilateral BPDE is cyclic, and hence P is
on the intersection of Γ′ with Γ.
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Otherwise,
∠EDP = ∠DGP = ∠AGP = ∠ABP = ∠EBP.

Therefore the quadrilateral PBDE is cyclic, and hence P again is on the intersection of Γ′

with Γ.
Similarly, if LH meets Γ at Q, we either have Q = B, in which case Γ′ is tangent to Γ

from inside, or Q ̸= B. In the latter case, Q is on the intersection of Γ′ with Γ. In either
case, we have P = Q.
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Problem 4. Consider the function f : N0 → N0, where N0 is the set of all non-negative
integers, defined by the following conditions :

(i) f(0) = 0, (ii) f(2n) = 2f(n) and (iii) f(2n + 1) = n + 2f(n) for all n ≥ 0.

(a) Determine the three sets L := {n | f(n) < f(n + 1) }, E := {n | f(n) = f(n + 1) }, and
G := {n | f(n) > f(n + 1) }.

(b) For each k ≥ 0, find a formula for ak := max{f(n) : 0 ≤ n ≤ 2k} in terms of k.

(Solution) (a) Let

L1 := {2k : k > 0}, E1 := {0} ∪ {4k + 1 : k ≥ 0}, and G1 := {4k + 3 : k ≥ 0}.

We will show that L1 = L, E1 = E, and G1 = G. It suffices to verify that L1 ⊆ E, E1 ⊆ E,
and G1 ⊆ G because L1, E1, and G1 are mutually disjoint and L1 ∪ E1 ∪ G1 = N0.

Firstly, if k > 0, then f(2k) − f(2k + 1) = −k < 0 and therefore L1 ⊆ L.
Secondly, f(0) = 0 and

f(4k + 1) = 2k + 2f(2k) = 2k + 4f(k)
f(4k + 2) = 2f(2k + 1) = 2(k + 2f(k)) = 2k + 4f(k)

for all k ≥ 0. Thus, E1 ⊆ E.
Lastly, in order to prove G1 ⊂ G, we claim that f(n + 1) − f(n) ≤ n for all n. (In fact,

one can prove a stronger inequality : f(n + 1) − f(n) ≤ n/2.) This is clearly true for even n
from the definition since for n = 2t,

f(2t + 1) − f(2t) = t ≤ n.

If n = 2t + 1 is odd, then (assuming inductively that the result holds for all nonnegative
m < n), we have

f(n + 1) − f(n) = f(2t + 2) − f(2t + 1) = 2f(t + 1) − t − 2f(t)
= 2(f(t + 1) − f(t)) − t ≤ 2t − t = t < n.

For all k ≥ 0,

f(4k + 4) − f(4k + 3) = f(2(2k + 2)) − f(2(2k + 1) + 1)
= 4f(k + 1) − (2k + 1 + 2f(2k + 1)) = 4f(k + 1) − (2k + 1 + 2k + 4f(k))
= 4(f(k + 1) − f(k)) − (4k + 1) ≤ 4k − (4k + 1) < 0.

This proves G1 ⊆ G.

(b) Note that a0 = a1 = f(1) = 0. Let k ≥ 2 and let Nk = {0, 1, 2, . . . , 2k}. First we claim
that the maximum ak occurs at the largest number in G ∩ Nk, that is, ak = f(2k − 1). We
use mathematical induction on k to prove the claim. Note that a2 = f(3) = f(22 − 1).

Now let k ≥ 3. For every even number 2t with 2k−1 + 1 < 2t ≤ 2k,

f(2t) = 2f(t) ≤ 2ak−1 = 2f(2k−1 − 1) (†)

by induction hypothesis. For every odd number 2t + 1 with 2k−1 + 1 ≤ 2t + 1 < 2k,

f(2t + 1) = t + 2f(t) ≤ 2k−1 − 1 + 2f(t)
≤ 2k−1 − 1 + 2ak−1 = 2k−1 − 1 + 2f(2k−1 − 1)

(‡)
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again by induction hypothesis. Combining (†), (‡) and

f(2k − 1) = f(2(2k−1 − 1) + 1) = 2k−1 − 1 + 2f(2k−1 − 1),

we may conclude that ak = f(2k − 1) as desired.
Furthermore, we obtain

ak = 2ak−1 + 2k−1 − 1

for all k ≥ 3. Note that this recursive formula for ak also holds for k ≥ 0, 1 and 2. Unwinding
this recursive formula, we finally get

ak = 2ak−1 + 2k−1 − 1 = 2(2ak−2 + 2k−2 − 1) + 2k−1 − 1
= 22ak−2 + 2 · 2k−1 − 2 − 1 = 22(2ak−3 + 2k−3 − 1) + 2 · 2k−1 − 2 − 1
= 23ak−3 + 3 · 2k−1 − 22 − 2 − 1
...
= 2ka0 + k2k−1 − 2k−1 − 2k−2 − ... − 2 − 1
= k2k−1 − 2k + 1 for all k ≥ 0.
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Problem 5. Let a, b, c be integers satisfying 0 < a < c − 1 and 1 < b < c. For each k,
0 ≤ k ≤ a, let rk, 0 ≤ rk < c, be the remainder of kb when divided by c. Prove that the two
sets {r0, r1, r2, . . . , ra} and {0, 1, 2, . . . , a} are different.

(Solution) Suppose that two sets are equal. Then gcd(b, c) = 1 and the polynomial

f(x) := (1 + xb + x2b + · · · + xab) − (1 + x + x2 + · · · + xa−1 + xa)

is divisible by xc − 1. (This is because : m = n+ cq =⇒ xm −xn = xn+cq −xn = xn(xcq − 1)
and (xcq − 1) = (xc − 1)((xc)q−1 + (xc)q−2 + · · · + 1).) From

f(x) =
x(a+1)b − 1

xb − 1
− xa+1 − 1

x − 1
=

F (x)
(x − 1)(xb − 1)

,

where F (x) = xab+b+1 + xb + xa+1 − xab+b − xa+b+1 − x , we have

F (x) ≡ 0 (mod xc − 1) .

Since xc ≡ 1 (mod xc − 1), we may conclude that

{ab + b + 1, b, a + 1} ≡ {ab + b, a + b + 1, 1} (mod c). (†)

Thus,
b ≡ ab + b, a + b + 1 or 1 (mod c).

But neither b ≡ 1 (mod c) nor b ≡ a + b + 1 (mod c) are possible by the given conditions.
Therefore, b ≡ ab + b (mod c). But this is also impossible because gcd(b, c) = 1.
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