2011 APMO PROBLEMS

Time allowed: 4 hoursEach problem is worth 7 points*The contest problems are to be kept confidential until they are posted on the official APMO website (http://www.mmjp.or.jp/competitions/APMO). Please do not disclose nor discuss the problems over the internet until that date. Calculators are not allowed to use.

Problem 1. Let a, b, c be positive integers. Prove that it is impossible to have all of the three numbers $a^2 + b + c$, $b^2 + c + a$, $c^2 + a + b$ to be perfect squares.

Problem 2. Five points A_1, A_2, A_3, A_4, A_5 lie on a plane in such a way that no three among them lie on a same straight line. Determine the maximum possible value that the minimum value for the angles $\angle A_i A_j A_k$ can take where i, j, k are distinct integers between 1 and 5.

Problem 3. Let ABC be an acute triangle with $\angle BAC = 30^{\circ}$. The internal and external angle bisectors of $\angle ABC$ meet the line AC at B_1 and B_2 , respectively, and the internal and external angle bisectors of $\angle ACB$ meet the line AB at C_1 and C_2 , respectively. Suppose that the circles with diameters B_1B_2 and C_1C_2 meet inside the triangle ABC at point P. Prove that $\angle BPC = 90^{\circ}$.

Problem 4. Let *n* be a fixed positive odd integer. Take m + 2 distinct points P_0, P_1, \dots, P_{m+1} (where *m* is a non-negative integer) on the coordinate plane in such a way that the following 3 conditions are satisfied:

(1) $P_0 = (0,1), P_{m+1} = (n+1,n)$, and for each integer $i, 1 \le i \le m$, both x- and y- coordinates of P_i are integers lying in between 1 and n (1 and n inclusive).

(2) For each integer $i, 0 \le i \le m, P_i P_{i+1}$ is parallel to the x-axis if i is even, and is parallel to the y-axis if i is odd.

(3) For each pair i, j with $0 \le i < j \le m$, line segments $P_i P_{i+1}$ and $P_j P_{j+1}$ share at most 1 point.

Determine the maximum possible value that m can take.

Problem 5. Determine all functions $f : \mathbf{R} \to \mathbf{R}$, where **R** is the set of all real numbers, satisfying the following 2 conditions:

(1) There exists a real number M such that for every real number x, f(x) < M is satisfied.

(2) For every pair of real numbers x and y,

$$f(xf(y)) + yf(x) = xf(y) + f(xy)$$

is satisfied.