2012 APMO PROBLEMS

Time allowed: 4 hours
Each problem is worth 7 points

The contest problems are to be kept confidential until they are posted on the official APMO website (http://www.mmjp.or.jp/competitions/APMO). Please do not disclose nor discuss the problems over the internet until that date. Calculators are not allowed to use.

Problem 1. Let P be a point in the interior of a triangle ABC, and let D, E, F be the point of intersection of the line AP and the side BC of the triangle, of the line BP and the side CA, and of the line CP and the side AB, respectively. Prove that the area of the triangle ABC must be 6 if the area of each of the triangles PFA, PDB and PEC is 1.

Problem 2. Into each box of a 2012×2012 square grid, a real number greater than or equal to 0 and less than or equal to 1 is inserted. Consider splitting the grid into 2 non-empty rectangles consisting of boxes of the grid by drawing a line parallel either to the horizontal or the vertical side of the grid. Suppose that for at least one of the resulting rectangles the sum of the numbers in the boxes within the rectangle is less than or equal to 1, no matter how the grid is split into 2 such rectangles. Determine the maximum possible value for the sum of all the 2012×2012 numbers inserted into the boxes.

Problem 3. Determine all the pairs (p, n) of a prime number p and a positive integer n for which \(\frac{n^p+1}{p^n+1}\) is an integer.

Problem 4. Let ABC be an acute triangle. Denote by D the foot of the perpendicular line drawn from the point A to the side BC, by M the midpoint of BC, and by H the orthocenter of ABC. Let E be the point of intersection of the circumcircle Γ of the triangle ABC and the half line MH, and F be the point of intersection (other than E) of the line ED and the circle Γ. Prove that $\frac{BF}{CF} = \frac{AB}{AC}$ must hold.

Here we denote by XY the length of the line segment XY.

Problem 5. Let n be an integer greater than or equal to 2. Prove that if the real numbers a_1, a_2, \cdots, a_n satisfy $a_1^2 + a_2^2 + \cdots + a_n^2 = n$, then

$$\sum_{1 \leq i < j \leq n} \frac{1}{n - a_ia_j} \leq \frac{n}{2}$$

must hold.