
SOLUTIONS FOR 2012 APMO PROBLEMS

Problem 1.

Solution: Let us denote by 4XY Z the area of the triangle XY Z. Let
x = 4PAB, y = 4PBC and z = 4PCA.

From

y : z = 4BCP : 4ACP = BF : AF = 4BPF : 4APF = (x− 1) : 1

follows that z(x − 1) = y, which yields (z + 1)x = x + y + z. Similarly, we get
(x+1)y = x+y +z and (y +1)z = x+y +z. Thus, we obtain (x+1)y = (y +1)z =
(z + 1)x.

We may assume without loss of generality that x ≤ y, z. If we assume that y > z
holds, then we get (y + 1)z > (z + 1)x, which is a contradiction. Similarly, we see
that y < z leads to a contradiction (x + 1)y < (y + 1)z. Therefore, we must have
y = z. Then, we also get from (y + 1)z = (z + 1)x that x = z must hold. We now
obtain from (x − 1) : 1 = y : z = 1 : 1 that x = y = z = 2 holds. Therefore, we
conclude that the area of the triangle ABC equals x + y + z = 6.

Problem 2.

Solution: If we insert numbers as in the figure below (0′s are to be inserted in the
remaining blank boxes), then we see that the condition of the problem is satisfied
and the total number of all the numbers inserted is 5.

0 1 0
1 1 1
0 1 0

We will show that the sum of all the numbers to be inserted in the boxes of the
given grid cannot be more than 5 if the distribution of the numbers has to satisfy
the requirement of the problem. Let n = 2012. Let us say that the row number
(the column number) of a box in the given grid is i (j, respectively) if the box lies
on the i-th row and the j-th column. For a pair of positive integers x and y, denote
by R(x, y) the sum of the numbers inserted in all of the boxes whose row number is
greater than or equal to x and less than or equal to y (assign the value 0 if x > y).

First let a be the largest integer satisfying 1 ≤ a ≤ n and R(1, a − 1) ≤ 1, and
then choose the smallest integer c satisfying a ≤ c ≤ n and R(c + 1, n) ≤ 1. It is
possible to choose such a pair a, c since R(1, 0) = 0 and R(n + 1, n) = 0. If a < c,
then we have a < n and so, by the maximality of a, we must have R(1, a) > 1,
while from the minimality of c, we must have R(a+1, n) > 1. Then by splitting the
grid into 2 rectangles by means of the horizontal line bordering the a-th row and
the a+ 1-th row, we get the splitting contradicting the requirement of the problem.
Thus, we must have a = c.

Similarly, if for any pair of integers x, y we define C(x, y) to be the sum of the
numbers inserted in all of the boxes whose column number is greater than or equal
to x and less than or equal to y (C(x, y) = 0 if x > y), then we get a number b for
which

C(1, b− 1) ≤ 1, C(b + 1, n) ≤ 1, 1 ≤ b ≤ n.
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If we let r be the number inserted in the box whose row number is a and the column
number is b, then since r ≤ 1, we conclude that the sum of the numbers inserted
into all of the boxes is

≤ R(1, a− 1) + R(a + 1, n) + C(1, b− 1) + C(b + 1, n) + r ≤ 5.

Problem 3.

Solution
For integers a, b and a positive integer m, let us write a ≡ b (mod m) if a − b

is divisible by m. Since np+1
pn+1 must be a positive integer, we see that pn ≤ np must

hold. This means that if p = 2, then 2n ≤ n2 must hold. As it is easy to show by
induction that 2n > n2 holds if n ≥ 5, we conclude that if p = 2, then n ≤ 4 must
be satisfied. And we can check that (p, n) = (2, 2), (2, 4) satisfy the condition of
the problem, while (2, 3) does not.

Next, we consider the case where p ≥ 3.
Suppose s is an integer satisfying s ≥ p. If sp ≤ ps for such an s, then we have

(s + 1)p = sp

(
1 +

1
s

)p

≤ ps

(
1 +

1
p

)p

= ps

p∑
r=0

pCr
1
pr

< ps

p∑
r=0

1
r!

≤ ps

(
1 +

p∑
r=1

1
2r−1

)
< ps(1 + 2) ≤ ps+1

Thus we have (s + 1)p < ps+1, and by induction on n, we can conclude that if
n > p, then np < pn. This implies that we must have n ≤ p in order to satisfy our
requirement pn ≤ np.

We note that since pn +1 is even, so is np +1, which, in turn implies that n must
be odd and therefore, pn + 1 is divisible by p + 1, and np + 1 is also divisible by
p + 1. Thus we have np ≡ −1 (mod (p + 1)), and therefore, n2p ≡ 1 (mod (p + 1)).

Now, let e be the smallest positive integer for which ne ≡ 1 (mod (p+1)). Then,
we can write 2p = ex + y, where x, y are non-negative integers and 0 ≤ y < e, and
we have

1 ≡ n2p = (ne)x · ny ≡ ny (mod (p + 1)),

which implies, because of the minimality of e, that y = 0 must hold. This means
that 2p is an integral multiple of e, and therefore, e must equal one of the numbers
1, 2, p, 2p.

Now, if e = 1, p, then we get np ≡ 1 (mod (p + 1)), which contradicts the
fact that p is an odd prime. Since n and p + 1 are relatively prime, we have by
Euler’s Theorem that nϕ(p+1) ≡ 1 (mod (p+1)), where ϕ(m) denotes the number of
integers j(1 ≤ j ≤ m) which are relatively prime with m. From ϕ(p+1) < p+1 < 2p
and the minimality of e, we can then conclude that e = 2 must hold.

From n2 ≡ 1 (mod (p + 1)), we get

−1 ≡ np = n(2· p−1
2 +1) ≡ n (mod (p + 1)),
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which implies that p + 1 divides n + 1. Therefore, we must have p ≤ n, which,
together with the fact n ≤ p, show that p = n must hold.

It is clear that the pair (p, p) for any prime p ≥ 3 satisfies the condition of the
problem, and thus, we conclude that the pairs (p, n) which satisfy the condition of
the problem must be of the form (2, 4) and (p, p) with any prime p.

Alternate Solution. Let us consider the case where p ≥ 3. As we saw in the
preceding solution, n must be odd if the pair (p, n) satisfy the condition of the
problem. Now, let q be a prime factor of p + 1. Then, since p + 1 divides pn + 1, q
must be a prime factor of pn + 1 and of np + 1 as well. Suppose q ≥ 3. Then, from
np ≡ −1 (mod q), it follows that n2p ≡ 1 (mod q) holds. If we let e be the smallest
positive integer satisfying ne ≡ 1 (mod q), then by using the same argument as
we used in the preceding solution, we can conclude that e must equal one of the
numbers 1, 2, p, 2p. If e = 1, p, then we get np ≡ 1 (mod q), which contradicts the
assumption q ≥ 3. Since n is not a multiple of q, by Fermat’s Little Theorem we
get nq−1 ≡ 1 (mod q), and therefore, we get by the minimality of e that e = 2 must
hold. From n2 ≡ 1 (mod q), we also get

np = n(2· p−1
2 +1) ≡ n (mod q),

and since np ≡ −1 (mod q), we have n ≡ −1 (mod q) as well.
Now, if q = 2 then since n is odd, we have n ≡ −1 (mod q) as well. Thus, we

conclude that for an arbitrary prime factor q of p + 1, n ≡ −1 (mod q) must hold.
Suppose, for a prime q, qk for some positive integer k is a factor of p + 1. Then

qk must be a factor of np + 1 as well. But since

np + 1 = (n + 1)(np−1 − np−2 + · · · − n + 1) and

np−1 − np−2 + · · · − n + 1 ≡ (−1)p−1 − (−1)p−2 + · · · − (−1) + 1 6≡ 0 (mod q),
we see that qk must divide n + 1. By applying the argument above for each prime
factor q of p + 1, we can then conclude that n + 1 must be divisible by p + 1, and
as we did in the preceding proof, we can conclude that n = p must hold.

Problem 4.

Solution: If AB = AC, then we get BF = CF and the conclusion of the problem
is clearly satisfied. So, we assume that AB 6= AC in the sequel.

Due to symmetry, we may suppose without loss of generality that AB > AC.
Let K be the point on the circle Γ such that AK is a diameter of this circle. Then,
we get

∠BCK = ∠ACK − ∠ACB = 90◦ − ∠ACB = ∠CBH

and
∠CBK = ∠ABK − ∠ABC = 90◦ − ∠ABC = ∠BCH,

from which we conclude that the triangles BCK and CBH are congruent. There-
fore, the quadrilateral BKCH is a parallelogram, and its diagonal HK passes
through the center M of the other diagonal BC. Therefore, the 3 points H,M,K
lie on the same straight line, and we have ∠AEM = ∠AEK = 90◦.

From ∠AED = 90◦ = ∠ADM , we see that the 4 points A, E, D,M lie on
the circumference of the same circle, from which we obtain ∠AMB = ∠AED =
∠AEF = ∠ACF . Putting this fact together with the fact that ∠ABM = ∠AFC,
we conclude that the triangles ABM and AFC are similar, and we get AM

BM = AC
FC .

By a similar argument, we get that the triangles ACM and AFB are similar, and
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therefore, that AM
CM = AB

FB holds. Noting that BM = CM , we also get AC
FC = AB

FB ,
from which we can conclude that BF

CF = AB
AC , proving the assertion of the problem.

Problem 5.

Solution: Let us note first that if i 6= j, then since aiaj ≤
a2

i +a2
j

2 , we have

n− aiaj ≥ n−
a2

i + a2
j

2
≥ n− n

2
=

n

2
> 0.

If we set bi = |ai| (i = 1, 2, . . . , n), then we get b2
1 + b2

2 + · · ·+ b2
n = n and 1

n−aiaj
≤

1
n−bibj

, which shows that it is enough to prove the assertion of the problem in the
case where all of a1, a2, · · · , an are non-negative. Hence, we assume from now on
that a1, a2, · · · , an are all non-negative.

By multiplying by n the both sides of the desired inequality we get the inequality:

∑
1≤i<j≤n

n

n− aiaj
≤ n2

2

and since n
n−aiaj

= 1 + aiaj

n−aiaj
, we obtain from the inequality above by subtracting

n(n−1)
2 from both sides the following inequality:

(i)
∑

1≤i<j≤n

aiaj

n− aiaj
≤ n

2

We will show that this inequality (i) holds.
If for some i the equality a2

i = n is valid, then aj = 0 must hold for all j 6= i and
the inequality (i) is trivially satisfied. So, we assume from now on that a2

i < n is
valid for each i.

Let us assume that i 6= j from now on. Since 0 ≤ aiaj ≤
(

ai+aj

2

)2

≤ a2
i +a2

j

2

holds, we have

(ii)
aiaj

n− aiaj
≤ aiaj

n− a2
i +a2

j

2

≤

(
ai+aj

2

)2

n− a2
i +a2

j

2

=
1
2
· (ai + aj)2

(n− a2
i ) + (n− a2

j )
.

Since n− a2
i > 0, n− a2

j > 0, we also get from the Cauchy-Schwarz inequality that

(
a2

j

n− a2
i

+
a2

i

n− a2
j

)
((n− a2

i ) + (n− a2
j )) ≥ (ai + aj)2,

from which it follows that

(iii)
(ai + aj)2

(n− a2
i ) + (n− a2

j )
≤

(
a2

j

n− a2
i

+
a2

i

n− a2
j

)
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holds. Combining the inequalities (ii) and (iii), we get∑
1≤i<j≤n

aiaj

n− aiaj
≤ 1

2

∑
1≤i<j≤n

(
a2

j

n− a2
i

+
a2

i

n− a2
j

)

=
1
2

∑
i 6=j

a2
j

n− a2
i

=
1
2

n∑
i=1

n− a2
i

n− a2
i

=
n

2
,

which establishes the desired inequality (i).


