XXV Asian Pacific Mathematics Olympiad

Time allowed: 4 hours
Problem 1. Let $A B C$ be an acute triangle with altitudes $A D, B E$ and $C F$, and let O be the center of its circumcircle. Show that the segments $O A, O F, O B, O D, O C, O E$ dissect the triangle $A B C$ into three pairs of triangles that have equal areas.

Problem 2. Determine all positive integers n for which $\frac{n^{2}+1}{[\sqrt{n}]^{2}+2}$ is an integer. Here $[r]$ denotes the greatest integer less than or equal to r.

Problem 3. For $2 k$ real numbers $a_{1}, a_{2}, \ldots, a_{k}, b_{1}, b_{2}, \ldots, b_{k}$ define the sequence of numbers X_{n} by

$$
X_{n}=\sum_{i=1}^{k}\left[a_{i} n+b_{i}\right] \quad(n=1,2, \ldots) .
$$

If the sequence X_{n} forms an arithmetic progression, show that $\sum_{i=1}^{k} a_{i}$ must be an integer. Here $[r]$ denotes the greatest integer less than or equal to r.

Problem 4. Let a and b be positive integers, and let A and B be finite sets of integers satisfying:
(i) A and B are disjoint;
(ii) if an integer i belongs either to A or to B, then $i+a$ belongs to A or $i-b$ belongs to B.

Prove that $a|A|=b|B|$. (Here $|X|$ denotes the number of elements in the set X.)
Problem 5. Let $A B C D$ be a quadrilateral inscribed in a circle ω, and let P be a point on the extension of $A C$ such that $P B$ and $P D$ are tangent to ω. The tangent at C intersects $P D$ at Q and the line $A D$ at R. Let E be the second point of intersection between $A Q$ and ω. Prove that B, E, R are collinear.

