XXVI Asian Pacific Mathematics Olympiad

Time allowed: 4 hours

Each problem if worth 7 points

Problem 1. For a positive integer m denote by S(m) and P(m) the sum and product, respectively, of the digits of m. Show that for each positive integer n, there exist positive integers a_1, a_2, \ldots, a_n satisfying the following conditions:

$$S(a_1) < S(a_2) < \dots < S(a_n)$$
 and $S(a_i) = P(a_{i+1})$ $(i = 1, 2, \dots, n)$.
(We let $a_{n+1} = a_1$.)

(Proposed by the Problem Committee of the Japan Mathematical Olympiad Foundation)

Problem 2. Let $S = \{1, 2, ..., 2014\}$. For each non-empty subset $T \subseteq S$, one of its members is chosen as its *representative*. Find the number of ways to assign representatives to all non-empty subsets of S so that if a subset $D \subseteq S$ is a disjoint union of non-empty subsets $A, B, C \subseteq S$, then the representative of D is also the representative of at least one of A, B, C.

(Proposed by Warut Suksompong, Thailand)

Problem 3. Find all positive integers n such that for any integer k there exists an integer a for which $a^3 + a - k$ is divisible by n.

(Proposed by Warut Suksompong, Thailand)

Problem 4. Let n and b be positive integers. We say n is b-discerning if there exists a set consisting of n different positive integers less than b that has no two different subsets U and V such that the sum of all elements in U equals the sum of all elements in V.

- (a) Prove that 8 is a 100-discerning.
- (b) Prove that 9 is not 100–discerning.

(Proposed by the Senior Problems Committee of the Australian Mathematical Olympiad Committee)

Problem 5. Circles ω and Ω meet at points A and B. Let M be the midpoint of the arc AB of circle ω (M lies inside Ω). A chord MP of circle ω intersects Ω at Q (Q lies inside ω). Let ℓ_P be the tangent line to ω at P, and let ℓ_Q be the tangent line to Ω at Q. Prove that the circumcircle of the triangle formed by the lines ℓ_P , ℓ_Q , and AB is tangent to Ω .

(Proposed by Ilya Bogdanov, Russia and Medeubek Kungozhin, Kazakhstan)