XXVII Asian Pacific Mathematics Olympiad

Time allowed: 4 hours

Each problem if worth 7 points

Problem 1. Let ABC be a triangle, and let D be a point on side BC. A line through D intersects side AB at X and ray AC at Y. The circumcircle of triangle BXD intersects the circumcircle ω of triangle ABC again at point $Z \neq B$. The lines ZD and ZY intersect ω again at V and W, respectively. Prove that AB = VW.

Proposed by Warut Suksompong, Thailand

Problem 2. Let $S = \{2, 3, 4, ...\}$ denote the set of integers that are greater than or equal to 2. Does there exist a function $f: S \to S$ such that

 $f(a)f(b) = f(a^2b^2)$ for all $a, b \in S$ with $a \neq b$?

Proposed by Angelo Di Pasquale, Australia

Problem 3. A sequence of real numbers a_0, a_1, \ldots is said to be *good* if the following three conditions hold.

- (i) The value of a_0 is a positive integer.
- (ii) For each non-negative integer *i* we have $a_{i+1} = 2a_i + 1$ or $a_{i+1} = \frac{a_i}{a_i + 2}$.
- (iii) There exists a positive integer k such that $a_k = 2014$.

Find the smallest positive integer n such that there exists a good sequence a_0, a_1, \ldots of real numbers with the property that $a_n = 2014$.

Proposed by Wang Wei Hua, Hong Kong

Problem 4. Let n be a positive integer. Consider 2n distinct lines on the plane, no two of which are parallel. Of the 2n lines, n are colored blue, the other n are colored red. Let \mathcal{B} be the set of all points on the plane that lie on at least one blue line, and \mathcal{R} the set of all points on the plane that lie on at least one red line. Prove that there exists a circle that intersects \mathcal{B} in exactly 2n - 1 points, and also intersects \mathcal{R} in exactly 2n - 1 points.

Proposed by Pakawut Jiradilok and Warut Suksompong, Thailand

Problem 5. Determine all sequences a_0, a_1, a_2, \ldots of positive integers with $a_0 \ge 2015$ such that for all integers $n \ge 1$:

- (i) a_{n+2} is divisible by a_n ;
- (ii) $|s_{n+1} (n+1)a_n| = 1$, where $s_{n+1} = a_{n+1} a_n + a_{n-1} \dots + (-1)^{n+1}a_0$.

Proposed by Pakawut Jiradilok and Warut Suksompong, Thailand