
Solutions of APMO 2015

Problem 1. Let ABC be a triangle, and let D be a point on side BC. A line through
D intersects side AB at X and ray AC at Y . The circumcircle of triangle BXD intersects the
circumcircle ω of triangle ABC again at point Z 6= B. The lines ZD and ZY intersect ω again
at V and W , respectively. Prove that AB = VW .

Solution. Suppose XY intersects ω at points P and Q, where Q lies between X and Y . We
will show that V and W are the reflections of A and B with respect to the perpendicular bisector
of PQ. From this, it follows that AVWB is an isosceles trapezoid and hence AB = VW .

First, note that

∠BZD = ∠AXY = ∠APQ+ ∠BAP = ∠APQ+ ∠BZP,

so ∠APQ = ∠PZV = ∠PQV , and hence V is the reflection of A with respect to the perpen-
dicular bisector of PQ.

Now, suppose W ′ is the reflection of B with respect to the perpendicular bisector of PQ,
and let Z ′ be the intersection of YW ′ and ω. It suffices to show that B, X, D, Z ′ are concyclic.
Note that

∠Y DC = ∠PDB = ∠PCB + ∠QPC = ∠W ′PQ+ ∠QPC = ∠W ′PC = ∠Y Z ′C.

So D, C, Y , Z ′ are concyclic. Next, ∠BZ ′D = ∠CZ ′B−∠CZ ′D = 180◦−∠BXD and due to
the previous concyclicity we are done.

Alternative solution 1. Using cyclic quadrilaterals BXDZ and ABZV in turn, we have
∠ZDY = ∠ZBA = ∠ZCY. So ZDCY is cyclic.

Using cyclic quadrilaterals ABZC and ZDCY in turn, we have ∠AZB = ∠ACB = ∠WZV
(or 180◦ − ∠WZV if Z lies between W and C).

So AB = VW because they subtend equal (or supplementary) angles in ω. �
Alternative solution 2. Using cyclic quadrilaterals BXDZ and ABZV in turn, we have

∠ZDY = ∠ZBA = ∠ZCY. So ZDCY is cyclic.
Using cyclic quadrilaterals BXDZ and ABZV in turn, we have ∠DXA = ∠V ZB =

180◦ −BAV. So XD ‖ AV .
Using cyclic quadrilaterals ZDCY and BCWZ in turn, we have ∠Y DC = ∠Y ZC =

∠WBC. So XD ‖ BW .
Hence BW ‖ AV which implies that AVWB is an isosceles trapezium with AB = VW . �

Problem 2. Let S = {2, 3, 4, . . .} denote the set of integers that are greater than or equal
to 2. Does there exist a function f : S → S such that

f(a)f(b) = f(a2b2) for all a, b ∈ S with a 6= b?

Solution. We prove that there is no such function. For arbitrary elements a and b of S,
choose an integer c that is greater than both of them. Since bc > a and c > b, we have

f(a4b4c4) = f(a2)f(b2c2) = f(a2)f(b)f(c).

Furthermore, since ac > b and c > a, we have

f(a4b4c4) = f(b2)f(a2c2) = f(b2)f(a)f(c).

Comparing these two equations, we find that for all elements a and b of S,

f(a2)f(b) = f(b2)f(a) =⇒ f(a2)

f(a)
=
f(b2)

f(b)
.
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It follows that there exists a positive rational number k such that

f(a2) = kf(a), for all a ∈ S. (1)

Substituting this into the functional equation yields

f(ab) =
f(a)f(b)

k
, for all a, b ∈ S with a 6= b. (2)

Now combine the functional equation with equations (1) and (2) to obtain

f(a)f(a2) = f(a6) =
f(a)f(a5)

k
=
f(a)f(a)f(a4)

k2
=
f(a)f(a)f(a2)

k
, for all a ∈ S.

It follows that f(a) = k for all a ∈ S. Substituting a = 2 and b = 3 into the functional equation
yields k = 1, however 1 6∈ S and hence we have no solutions.

Problem 3. A sequence of real numbers a0, a1, . . . is said to be good if the following three
conditions hold.

(i) The value of a0 is a positive integer.

(ii) For each non-negative integer i we have ai+1 = 2ai + 1 or ai+1 =
ai

ai + 2
.

(iii) There exists a positive integer k such that ak = 2014.

Find the smallest positive integer n such that there exists a good sequence a0, a1, . . . of real
numbers with the property that an = 2014.

Answer: 60.

Solution. Note that

ai+1 + 1 = 2(ai + 1) or ai+1 + 1 =
ai + ai + 2

ai + 2
=

2(ai + 1)

ai + 2
.

Hence
1

ai+1 + 1
=

1

2
· 1

ai + 1
or

1

ai+1 + 1
=

ai + 2

2(ai + 1)
=

1

2
· 1

ai + 1
+

1

2
.

Therefore,

1

ak + 1
=

1

2k
· 1

a0 + 1
+

k∑
i=1

εi
2k−i+1

, (1)

where εi = 0 or 1. Multiplying both sides by 2k(ak + 1) and putting ak = 2014, we get

2k =
2015

a0 + 1
+ 2015 ·

(
k∑

i=1

εi · 2i−1

)
,

where εi = 0 or 1. Since gcd(2, 2015) = 1, we have a0 + 1 = 2015 and a0 = 2014. Therefore,

2k − 1 = 2015 ·

(
k∑

i=1

εi · 2i−1

)
,

where εi = 0 or 1. We now need to find the smallest k such that 2015|2k − 1. Since 2015 =
5 ·13 ·31, from the Fermat little theorem we obtain 5|24 − 1, 13|212 − 1 and 31|230 − 1. We also
have lcm[4, 12, 30] = 60, hence 5|260 − 1, 13|260 − 1 and 31|260 − 1, which gives 2015|260 − 1.
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But 5 - 230 − 1 and so k = 60 is the smallest positive integer such that 2015|2k − 1. To conclude,
the smallest positive integer k such that ak = 2014 is when k = 60.

Alternative solution 1. Clearly all members of the sequence are positive rational numbers.

For each positive integer i, we have ai =
ai+1 − 1

2
or ai =

2ai+1

1− ai+1

. Since ai > 0 we deduce

that

ai =


ai+1 − 1

2
if ai+1 > 1

2ai+1

1− ai+1

if ai+1 < 1.

Thus ai is uniquely determined from ai+1. Hence starting from ak = 2014, we simply run the
sequence backwards until we reach a positive integer. We compute as follows.
2014
1
, 2013

2
, 2011

4
, 2007

8
, 1999

16
, 1983

32
, 1951

64
, 1887
128

, 1759
256

, 1503
512

, 991
1024

, 1982
33
, 1949

66
, 1883
132

, 1751
264

, 1487
528

, 959
1056

, 1918
97
, 1821
194

, 1627
388

,

1239
776

, 463
1552

, 926
1089

, 1852
163

, 1689
326

, 1363
652

, 711
1304

, 1422
593

, 829
1186

, 1658
357

, 1301
714

, 587
1428

, 1174
841

, 333
1682

, 666
1349

, 1332
683

, 649
1366

, 1298
717

, 581
1434

, 1162
853

,

309
1706

, 618
1397

, 1236
779

, 457
1558

, 914
1101

, 1828
187

, 1641
374

, 1267
748

, 519
1496

, 1038
977

, 61
1954

, 122
1893

, 244
1771

, 488
1527

, 976
1039

, 1952
63
, 1889
126

, 1763
252

, 1511
504

, 1007
1008

, 2014
1

.

There are 61 terms in the above list. Thus k = 60. �
Alternative solution 1 is quite computationally intensive. Calculating the first few terms

indicates some patterns that are easy to prove. This is shown in the next solution.

Alternative solution 2. Start with ak =
m0

n0

where m0 = 2014 and n0 = 1 as in alternative

solution 1. By inverting the sequence as in alternative solution 1, we have ak−i =
mi

ni

for i ≥ 0

where

(mi+1, ni+1) =

{
(mi − ni, 2ni) if mi > ni

(2mi, ni −mi) if mi < ni.

Easy inductions show that mi + ni = 2015, 1 ≤ mi, ni ≤ 2014 and gcd(mi, ni) = 1 for
i ≥ 0. Since a0 ∈ N+ and gcd(mk, nk) = 1, we require nk = 1. An easy induction shows that
(mi, ni) ≡ (−2i, 2i) (mod 2015) for i = 0, 1, . . . , k.

Thus 2k ≡ 1 (mod 2015). As in the official solution, the smallest such k is k = 60. This
yields nk ≡ 1 (mod 2015). But since 1 ≤ nk,mk ≤ 2014, it follows that a0 is an integer. �

Problem 4. Let n be a positive integer. Consider 2n distinct lines on the plane, no two
of which are parallel. Of the 2n lines, n are colored blue, the other n are colored red. Let B be
the set of all points on the plane that lie on at least one blue line, and R the set of all points
on the plane that lie on at least one red line. Prove that there exists a circle that intersects B
in exactly 2n− 1 points, and also intersects R in exactly 2n− 1 points.

Solution. Consider a line ` on the plane and a point P on it such that ` is not parallel to
any of the 2n lines. Rotate ` about P counterclockwise until it is parallel to one of the 2n lines.
Take note of that line and keep rotating until all the 2n lines are met. The 2n lines are now
ordered according to which line is met before or after. Say the lines are in order `1, . . . , `2n.
Clearly there must be k ∈ {1, . . . , 2n− 1} such that `k and `k+1 are of different colors.

Now we set up a system of X– and Y – axes on the plane. Consider the two angular bisectors
of `k and `k+1. If we rotate `k+1 counterclockwise, the line will be parallel to one of the bisectors
before the other. Let the bisector that is parallel to the rotation of `k+1 first be the X–axis,
and the other the Y –axis. From now on, we will be using the directed angle notation: for lines
s and s′, we define ∠(s, s′) to be a real number in [0, π) denoting the angle in radians such
that when s is rotated counterclockwise by ∠(s, s′) radian, it becomes parallel to s′. Using this
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notation, we notice that there is no i = 1, . . . , 2n such that ∠(X, li) is between ∠(X, `k) and
∠(X, `k+1).

Because the 2n lines are distinct, the set S of all the intersections between `i and `j (i 6= j)
is a finite set of points. Consider a rectangle with two opposite vertices lying on `k and the
other two lying on `k+1. With respect to the origin (the intersection of `k and `k+1), we can
enlarge the rectangle as much as we want, while all the vertices remain on the lines. Thus,
there is one of these rectangles R which contains all the points in S in its interior. Since each
side of R is parallel to either X– or Y – axis, R is a part of the four lines x = ±a, y = ±b.
where a, b > 0.

M
N

b

−b

a−a X

Y
lklk+1

Consider the circle C tangent to the right of the x = a side of the rectangle, and to both `k
and `k+1. We claim that this circle intersects B in exactly 2n− 1 points, and also intersects R
in exactly 2n− 1 points. Since C is tangent to both `k and `k+1 and the two lines have different
colors, it is enough to show that C intersects with each of the other 2n − 2 lines in exactly 2
points. Note that no two lines intersect on the circle because all the intersections between lines
are in S which is in the interior of R.

Consider any line L among these 2n−2 lines. Let L intersect with `k and `k+1 at the points
M and N , respectively (M and N are not necessarily distinct). Notice that both M and N
must be inside R. There are two cases:

(i) L intersects R on the x = −a side once and another time on x = a side;
(ii) L intersects y = −b and y = b sides.
However, if (ii) happens, ∠(`k, L) and ∠(L, `k+1) would be both positive, and then ∠(X,L)

would be between ∠(X, `k) and ∠(X, `k+1), a contradiction. Thus, only (i) can happen. Then
L intersects C in exactly two points, and we are done.

Alternative solution. By rotating the diagram we can ensure that no line is vertical. Let
`1, `2, . . . , `2n be the lines listed in order of increasing gradient. Then there is a k such that lines
`k and `k+1 are oppositely coloured. By rotating our coordinate system and cyclicly relabelling
our lines we can ensure that `1, `2, . . . , `2n are listed in order of increasing gradient, `1 and `2n
are oppositely coloured, and no line is vertical.

Let D be a circle centred at the origin and of sufficiently large radius so that

• All intersection points of all pairs of lines lie strictly inside D; and

• Each line `i intersects D in two points Ai and Bi say, such that Ai is on the right semicircle
(the part of the circle in the positive x half plane) and Bi is on the left semicircle.

Note that the anticlockwise order of the points Ai, Bi aroundD is A1, A2, . . . , An, B1, B2, . . . , Bn.
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(If Ai+1 occurred before Ai then rays ri and ri+1 (as defined below) would intersect outside D.)

B1

A1

A2n

B2n

B2n−1

A2n−1
B2

A2

D

C

r1

r2n
r2n−1

r2

For each i, let ri be the ray that is the part of the line `i starting from point Ai and that
extends to the right. Let C be any circle tangent to r1 and r2n, that lies entirely to the right
of D. Then C intersects each of r2, r3, . . . , r2n−1 twice and is tangent to r1 and r2n. Thus C has
the required properties. �

Problem 5. Determine all sequences a0, a1, a2, . . . of positive integers with a0 ≥ 2015
such that for all integers n ≥ 1:

(i) an+2 is divisible by an;
(ii) |sn+1 − (n+ 1)an| = 1, where sn+1 = an+1 − an + an−1 − · · ·+ (−1)n+1a0.

Answer: There are two families of answers:
(a) an = c(n+ 2)n! for all n ≥ 1 and a0 = c+ 1 for some integer c ≥ 2014, and
(b) an = c(n+ 2)n! for all n ≥ 1 and a0 = c− 1 for some integer c ≥ 2016.

Solution. Let {an}∞n=0 be a sequence of positive integers satisfying the given conditions.
We can rewrite (ii) as sn+1 = (n + 1)an + hn, where hn ∈ {−1, 1}. Substituting n with n − 1
yields sn = nan−1 + hn−1, where hn−1 ∈ {−1, 1}. Note that an+1 = sn+1 + sn, therefore there
exists δn ∈ {−2, 0, 2} such that

an+1 = (n+ 1)an + nan−1 + δn. (1)

We also have |s2−2a1| = 1, which yields a0 = 3a1−a2±1 ≤ 3a1, and therefore a1 ≥ a0
3 ≥ 671.

Substituting n = 2 in (1), we find that a3 = 3a2 + 2a1 + δ2. Since a1|a3, we have a1|3a2 + δ2,
and therefore a2 ≥ 223. Using (1), we obtain that an ≥ 223 for all n ≥ 0.

Lemma 1: For n ≥ 4, we have an+2 = (n+ 1)(n+ 4)an.

Proof. For n ≥ 3 we have

an = nan−1 + (n− 1)an−2 + δn−1 > nan−1 + 3. (2)

By applying (2) with n substituted by n− 1 we have for n ≥ 4,

an = nan−1 + (n− 1)an−2 + δn−1 < nan−1 + (an−1 − 3) + δn−1 < (n+ 1)an−1. (3)

Using (1) to write an+2 in terms of an and an−1 along with (2), we obtain that for n ≥ 3,

an+2 = (n+ 3)(n+ 1)an + (n+ 2)nan−1 + (n+ 2)δn + δn+1

< (n+ 3)(n+ 1)an + (n+ 2)nan−1 + 3(n+ 2)

< (n2 + 5n+ 5)an.
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Also for n ≥ 4,

an+2 = (n+ 3)(n+ 1)an + (n+ 2)nan−1 + (n+ 2)δn + δn+1

> (n+ 3)(n+ 1)an + nan

= (n2 + 5n+ 3)an.

Since an|an+2, we obtain that an+2 = (n2 + 5n+ 4)an = (n+ 1)(n+ 4)an, as desired. �

Lemma 2: For n ≥ 4, we have an+1 =
(n+ 1)(n+ 3)

n+ 2 an.

Proof. Using the recurrence an+3 = (n + 3)an+2 + (n + 2)an+1 + δn+2 and writing an+3,
an+2 in terms of an+1, an according to Lemma 1 we obtain

(n+ 2)(n+ 4)an+1 = (n+ 3)(n+ 1)(n+ 4)an + δn+2.

Hence n+ 4|δn+2, which yields δn+2 = 0 and an+1 =
(n+ 1)(n+ 3)

n+ 2 an, as desired. �

Suppose there exists n ≥ 1 such that an+1 6=
(n+ 1)(n+ 3)

n+ 2 an. By Lemma 2, there exist a

greatest integer 1 ≤ m ≤ 3 with this property. Then am+2 =
(m+ 2)(m+ 4)

m+ 3 am+1. If δm+1 = 0,

we have am+1 =
(m+ 1)(m+ 3)

m+ 2 am, which contradicts our choice of m. Thus δm+1 6= 0.

Clearly m + 3|am+1. Write am+1 = (m + 3)k and am+2 = (m + 2)(m + 4)k. Then (m +
1)am + δm+1 = am+2 − (m+ 2)am+1 = (m+ 2)k. So, am|(m+ 2)k − δm+1. But am also divides
am+2 = (m+ 2)(m+ 4)k. Combining the two divisibility conditions, we obtain am|(m+ 4)δm+1.
Since δm+1 6= 0, we have am|2m + 8 ≤ 14, which contradicts the previous result that an ≥ 223
for all nonnegative integers n.

So, an+1 =
(n+ 1)(n+ 3)

n+ 2 an for n ≥ 1. Substituting n = 1 yields 3|a1. Letting a1 = 3c,

we have by induction that an = n!(n + 2)c for n ≥ 1. Since |s2 − 2a1| = 1, we then get
a0 = c ± 1, yielding the two families of solutions. By noting that (n + 2)n! = n! + (n + 1)!,
we have sn+1 = c(n + 2)! + (−1)n(c − a0). Hence both families of solutions satisfy the given
conditions.
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