XXX Asian Pacific Mathematics Olympiad

March, 2018

Time allowed: 4 hours

Each problem is worth 7 points

The contest problems are to be kept confidential until they are posted on the official APMO website http://apmo.ommenlinea.org.

Please do not disclose nor discuss the problems over online until that date. The use of calculators is not allowed.

Problem 1. Let H be the orthocenter of the triangle ABC. Let M and N be the midpoints of the sides AB and AC, respectively. Assume that H lies inside the quadrilateral BMNC and that the circumcircles of triangles BMH and CNH are tangent to each other. The line through H parallel to BC intersects the circumcircles of the triangles BMH and CNH in the points K and L, respectively. Let F be the intersection point of MK and NL and let J be the incenter of triangle MHN. Prove that FJ = FA.

Proposed by Mahdi Etesamifard, Iran

Problem 2. Let f(x) and g(x) be given by

$$f(x) = \frac{1}{x} + \frac{1}{x-2} + \frac{1}{x-4} + \dots + \frac{1}{x-2018}$$

and

$$g(x) = \frac{1}{x-1} + \frac{1}{x-3} + \frac{1}{x-5} + \dots + \frac{1}{x-2017}.$$

Prove that

|f(x) - g(x)| > 2

for any non-integer real number x satisfying 0 < x < 2018.

Proposed by Senior Problems Committee of the Australian Mathematical Olympiad Committee

Problem 3. A collection of n squares on the plane is called *tri-connected* if the following criteria are satisfied:

(i) All the squares are congruent.

- (ii) If two squares have a point P in common, then P is a vertex of each of the squares.
- (iii) Each square touches exactly three other squares.

How many positive integers n are there with $2018 \le n \le 3018$, such that there exists a collection of n squares that is tri-connected?

Proposed by Senior Problems Committee of the Australian Mathematical Olympiad Committee

Problem 4. Let ABC be an equilateral triangle. From the vertex A we draw a ray towards the interior of the triangle such that the ray reaches one of the sides of the triangle. When the ray reaches a side, it then bounces off following the *law of reflection*, that is, if it arrives with a directed angle α , it leaves with a directed angle $180^{\circ} - \alpha$. After n bounces, the ray returns to A without ever landing on any of the other two vertices. Find all possible values of n.

Proposed by Daniel Perales and Jorge Garza, Mexico

Problem 5. Find all polynomials P(x) with integer coefficients such that for all real numbers s and t, if P(s) and P(t) are both integers, then P(st) is also an integer.

Proposed by William Ting-Wei Chao, Taiwan