
Solutions of APMO 2018

Problem 1. Let H be the orthocenter of the triangle ABC. Let M and N be the
midpoints of the sides AB and AC, respectively. Assume that H lies inside the quadrilateral
BMNC and that the circumcircles of triangles BMH and CNH are tangent to each other.
The line through H parallel to BC intersects the circumcircles of the triangles BMH and CNH
in the points K and L, respectively. Let F be the intersection point of MK and NL and let J
be the incenter of triangle MHN . Prove that FJ = FA.

Solution.
Lemma 1. In a triangle ABC, let D be the intersection of the interior angle bisector at A

with the circumcircle of ABC, and let I be the incenter of 4ABC. Then

DI = DB = DC.

Proof.

∠DBI =
∠BAC

2
+
B̂

2
= ∠DIB ⇒ DI = DB.

Analogously DI = DC.

We start solving the problem. First we state some position considerations. Since there is
an arc of the circumcircle of BHM outside the triangle ABC, it must happen that K and N
lie on opposite sides of AM . Similarly, L and M lie on opposite sides of AN . Also, K and L
lie on the same side of MN , and opposite to A. Therefore, F lies inside the triangle AMN .

Now, since H is the orthocenter of 4ABC and the circumcircles of BMH and CNH are
tangent we have

∠ABH = 90◦−∠BAC = ∠ACH ⇒ ∠MHN = ∠MBH+∠NCH = 180◦−2∠BAC. (1)

So ∠MBH = ∠MKH = ∠NCH = ∠NLH = 90◦ − ∠BAC and, since MN‖KL, we have

∠FMN = ∠FNM = 90◦ − ∠BAC ⇒ ∠MFN = 2∠BAC. (2)

The relations (1) and (2) yield that the quadrilateral MFNH is cyclic, with the vertices
in this order around the circumference. Since FM = FN , ∠MFN = 2∠BAC and F is the
correct side of MN we have that the point F is the circumcenter of triangle AMN , and thus
FA = FM = FN .
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Since the quadrilateral MFNH is cyclic, FM = FN and H lies on the correct side of
MN , we have that H, J and F are collinear. According to Lemma 1, FJ = FM = FN . So
FJ = FA.

Solution 2: According to Solution 1, we have ∠MHN = 180◦ − 2∠BAC and since the
point J is the incenter of 4MHN , we have ∠MJN = 90◦ + 1

2 ∠MHN = 180◦ − ∠BAC. So

the quadrilateral AMJN is cyclic.
According to Solution 1, the point F is the circumcenter of 4AMN . So FJ = FA.

Problem 2. Let f(x) and g(x) be given by

f(x) =
1

x
+

1

x− 2
+

1

x− 4
+ · · ·+ 1

x− 2018

and

g(x) =
1

x− 1
+

1

x− 3
+

1

x− 5
+ · · ·+ 1

x− 2017
.

Prove that
|f(x)− g(x)| > 2

for any non-integer real number x satisfying 0 < x < 2018.
Solution 1 There are two cases: 2n − 1 < x < 2n and 2n < x < 2n + 1. Note that

f(2018 − x) = −f(x) and g(2018 − x) = −g(x), that is, a half turn about the point (1009, 0)
preserves the graphs of f and g. So it suffices to consider only the case 2n− 1 < x < 2n.

Let d(x) = g(x) − f(x). We will show that d(x) > 2 whenever 2n − 1 < x < 2n and
n ∈ {1, 2, . . . , 1009}.

For any non-integer x with 0 < x < 2018, we have

d(x+ 2)− d(x) =

(
1

x+ 1
− 1

x+ 2

)
+

(
1

x− 2018
− 1

x− 2017

)
> 0 + 0 = 0.

Hence it suffices to prove d(x) > 2 for 1 < x < 2. Since x < 2, it follows that 1
x− 2i− 1 >

1
x− 2i for i = 2, 3, . . . , 1008. We also have 1

x− 2018 < 0. Hence it suffices to prove the following
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for 1 < x < 2.

1

x− 1
+

1

x− 3
− 1

x
− 1

x− 2
> 2

⇔
(

1

x− 1
+

1

2− x

)
+

(
1

x− 3
− 1

x

)
> 2

⇔ 1

(x− 1)(2− x)
+

3

x(x− 3)
> 2.

By the GM − HM inequality (alternatively, by considering the maximum of the quadratic
(x− 1)(2− x)) we have

1

x− 1
· 1

2− x
>

(
2

(x− 1) + (2− x)

)2

= 4.

To find a lower bound for 3
x(x− 3)

, note that x(x− 3) < 0 for 1 < x < 2. So we seek an upper

bound for x(x − 3). From the shape of the quadratic, this occurs at x = 1 or x = 2, both of

which yield 3
x(x− 3)

> − 3
2 .

It follows that d(x) > 4− 3
2 > 2, as desired.

Solution 2
As in Solution 1, we may assume 2n − 1 < x < 2n for some 1 ≤ n ≤ 1009. Let d(x) =

f(x)− g(x), and note that

d(x) =
1

x
+

1009∑
m=1

1

(x− 2m)(x− 2m+ 1)

We split the sum into three parts: the terms before m = n, after m = n, and the term m = n.
The first two are

0 ≤
n−1∑
m=1

1

(x− 2m)(x− 2m+ 1)

≤
n−1∑
m=1

1

(2n− 1− 2m)(2n− 2m)
=

n−1∑
i=1

1

(2i)(2i− 1)
≤

1008∑
i=1

1

2i− 1
− 1

2i
,

0 ≤
1009∑

m=n+1

1

(2m− x)(2m− 1− x)

≤
1009∑

m=n+1

1

(2m− 2n+ 1)(2m− 2n)
=

1009−n∑
i=1

1

(2i+ 1)(2i)
≤

1008∑
i=1

1

2i
− 1

2i+ 1
.

When we add the two sums the terms telescope and we are left with

0 ≤
∑

1≤m≤1009,m 6=n

1

(x− 2m)(x− 2m+ 1)
≤ 1− 1

2017
< 1,

For the term m = n, we write

0 < −(x− 2n)(x− 2n+ 1) = 0.25− (x− 2n+ 0.5)2 ≤ 0.25,
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whence

−4 ≥ 1

(x− 2n)(x− 2n+ 1)
.

Finally, 1
x < 1 since x > 2n− 1 ≥ 1. Combining these we get

d(x) =
1

x
+

1009∑
m=1

1

(x− 2m)(x− 2m+ 1)
< 1 + 1− 4 < −2.

Solution 3
First notice that

f(x)− g(x) =
1

x
− 1

x− 1
+

1

x− 2
− · · · − 1

x− 2017
+

1

x− 2018
.

As in Solution 1, we may deal only with the case 2n < x < 2n + 1. Then x − 2k + 1 and
x− 2k never differ in sign for any integer k. Then

− 1

x− 2k + 1
+

1

x− 2k
=

1

(x− 2k + 1)(x− 2k)
> 0 for k = 1, 2, . . . , n− 1, n+ 2, . . . , 1009.

1

x− 2n
− 1

x− 2n− 1
=

1

(x− 2n)(2n+ 1− x)
≥
(

2

x− 2n+ 2n+ 1− x

)2

= 4,

Therefore, summing all inequalities and collecting the remaining terms we find f(x)−g(x) >

4 + 1
x− 2 > 4− 1 = 3 for 0 < x < 1 and, for n > 0,

f(x)− g(x) >
1

x
− 1

x− 2n+ 1
+ 4 +

1

x− 2n− 2

=
1

x
− 1

x− 2n+ 1
+ 4− 1

2n+ 2− x

>
1

x
− 1

2n− 2n+ 1
+ 4− 1

2n+ 2− 2n− 1

= 2 +
1

x
> 2.

Problem 3. A collection of n squares on the plane is called tri-connected if the following
criteria are satisfied:

(i) All the squares are congruent.

(ii) If two squares have a point P in common, then P is a vertex of each of the squares.

(iii) Each square touches exactly three other squares.

How many positive integers n are there with 2018 ≤ n ≤ 3018, such that there exists a collection
of n squares that is tri-connected?

Answer: 501

Solution. We will prove that there is no tri-connected collection if n is odd, and that
tri-connected collections exist for all even n ≥ 38. Since there are 501 even numbers in the
range from 2018 to 3018, this yields 501 as the answer.
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For any two different squares A and B, let us write A ∼ B to mean that square A touches
square B. Since each square touches exactly three other squares, and there are n squares in
total, the total number of instances of A ∼ B is 3n. But A ∼ B if and only if B ∼ A. Hence
the total number of instances of A ∼ B is even. Thus 3n and hence also n is even.

We now construct tri-connected collections for each even n in the range. We show two
Construction 1 The idea is to use the following two configurations. Observe that in each

configuration every square is related to three squares except for the leftmost and rightmost
squares which are related to two squares. Note that the configuration on the left is of variable
length. Also observe that multiple copies of the configuration on the right can be chained
together to end around corners.

Putting the above two types of configurations together as in the following figure yields a
tri-connected collection for every even n ≥ 38.

Construction 2 Consider a regular 4n−gon A1A2 · · ·A4n, and make 4n squares on the
outside of the 4n−gon with one side being on the 4n−gon. Reflect squares sharing sides
A4m+2A4m+3, A4m+3A4m+4 across line A4m+2A4m+4, for 0 ≤ m ≤ n − 1. This will produce a
tri-connected set of 6n squares, as long as the squares inside the 4n−gon do not intersect.
When n ≥ 4, this will be true. The picture for n = 24 is as follows:

To treat the other cases, consider the following gadget
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Y

X

Two squares touch 3 other squares, and the squares containing X, Y touch 2 other squares.
Take the 4n−gon from above, and break it into two along the line A1A2n, moving the two
parts away from that line. Do so until the gaps can be exactly filled by inserting two copies of
the above figure, so that the vertices X, Y touch the two vertices which used to be A1 in one
instance, and the two vertices which used to be A2n in the other.
This gives us a valid configuration for 6n+ 8 squares, n ≥ 4. Finally, if we had instead spread
the two parts out more and inserted two copies of the above figure into each gap, we would get
6n+ 16 for n ≥ 4, which finishes the proof for all even numbers at least 36.

Problem 4. Let ABC be an equilateral triangle. From the vertex A we draw a ray
towards the interior of the triangle such that the ray reaches one of the sides of the triangle.
When the ray reaches a side, it then bounces off following the law of reflection, that is, if it
arrives with a directed angle α, it leaves with a directed angle 180◦ − α. After n bounces, the
ray returns to A without ever landing on any of the other two vertices. Find all possible values
of n.

Answer: All n ≡ 1, 5 mod 6 with the exception of 5 and 17

Solution. Consider an equilateral triangle AA1A2 of side length m and triangulate it with
unitary triangles. See the figure. To each of the vertices that remain after the triangulation we
can assign a pair of coordinates (a, b) where a, b are non-negative integers, a is the number of
edges we travel in the AA1 direction and b is the number of edges we travel in the AA2 direction
to arrive to the vertex, (we have A = (0, 0), A1 = (m, 0) and A2 = (0,m)). The unitary triangle
with vertex A will be our triangle ABC, (B = (1, 0), C = (0, 1)). We can obtain every unitary
triangle by starting with ABC and performing reflections with respect to a side (the vertex
(1, 1) is the reflection of A with respect to BC, the vertex (0, 2) is the reflection of B = (1, 0)
with respect to the side formed by C = (1, 0) and (1, 1), and so on).

When we reflect a vertex (a, b) with respect to a side of one of the triangles, the congruence
of a−b is preserved modulo 3. Furthermore, an induction argument shows that any two vertices
(a, b) and (a′, b′) with a− b ≡ a′− b′ mod 3 can be obtained from each other by a series of such
reflections. Therefore, the set of vertices V that result from the reflections of A will be those
of the form (a, b) satisfying a ≡ b mod 3. See the green vertices in the figure.

Now, let U be the set of vertices u that satisfy that the line segment between u and A
does not pass through any other vertex. A pair (a, b) is in U if and only if gcd(a, b) = 1, since
otherwise for d = gcd(a, b) we have that the vertex (a/d, b/d) also lies on the line segment
between u and A.

Observe that the rays that come out from A and eventually return to A are those that come
out towards a vertex in V ∩ U (they would be in V to be able to come back to A and in U
so that they do not reach a vertex beforehand). In the diagram, a ray toward one such vertex
(a, b) will intersect exactly (a − 1) + (b − 1) + (a + b − 1) = 2(a + b) − 3 lines: a − 1 of them
parallel to AB, b − 1 parallel to AC and a + b − 1 parallel to BC. Therefore, in the triangle
ABC the ray will bounce 2(a + b) − 3 times before returning to A. So we want to find all

6



n = 2(a+ b)− 3 where a ≡ b mod 3 and gcd(a, b) = 1.
If a+ b is a multiple of 3 then we cannot satisfy both conditions simultaneously, therefore n

is not a multiple of 3. We also know that n is odd. Therefore n ≡ 1, 5, 7, 11 mod 12. Note that
the pair (1, 3k + 1) satisfies the conditions and we can create n = 2(3k + 2) − 3 = 6k + 1 for
all k ≥ 0 (this settles the question for n ≡ 1, 7 mod 12). For n ≡ 5 mod 12 consider the pair
(3k− 1, 3k+ 5) when k is even or (3k− 4, 3k+ 8) when k is odd. This gives us all the integers
of the form 12k + 5 for k ≥ 2. For 11 mod 12, take the pairs (3k − 1, 3k + 2) (with k ≥ 1),
which yield all positive integers of the form 12k − 1.

Finally, to discard 5 and 17 note that the only pairs (a, b) that are solutions to 2(a+b)−3 = 5
or 2(a + b) − 3 = 17 with the same residue mod 3 in this range are the non-relatively prime
pairs (2, 2), (2, 8) and (5, 5).

Problem 5. Find all polynomials P (x) with integer coefficients such that for all real
numbers s and t, if P (s) and P (t) are both integers, then P (st) is also an integer.

Answer: P (x) = xn + k,−xn + k for n a non-negative integer and k an integer.
Solution 1: P (x) = xn + k,−xn + k for n a non-negative integer and k an integer.
Notice that if P (x) is a solution, then so is P (x) + k and −P (x) + k for any integer k, so

we may assume that the leading coefficient of P (x) is positive and that P (0) = 0, i.e., we can
assume that P (x) =

∑n
i=1 aix

i with an > 0. We are going to prove that P (x) = xn in this case.
Let p be a large prime such that p >

∑n
i=1 |ai|. Because P has a positive leading coefficient

and p is large enough, we can find t ∈ R such that P (t) = p. Denote the greatest common
divisor of the polynomial P (x) − p and P (2x) − P (2t) as f(x), and t is a root of it, so f is a
non-constant polynomial. Notice that P (2t) is an integer by using the hypothesis for s = 2 and
t. Since P (x)− p and P (2x)−P (2t) are polynomials with integer coefficients, f can be chosen
as a polynomial with rational coefficients.

In the following, we will prove that f is the same as P (x)− p up to a constant multiplier.
Say P (x)− p = f(x)g(x), where f and g are non-constant polynomials. By Gauss’s lemma, we
can get f1, g1 with P (x) − p = f1(x)g1(x) where f1 is a scalar multiple of f and g1 is a scalar
multiple of g and one of f1, g1 has constant term ±1 (this is because −p = P (0)− p = f(0)g(0)
with p prime). So P (x)−p has at least one root r with absolute value not greater than 1 (using
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Vieta, the product of the roots of the polynomial with constant term ±1 is ±1), but

|P (r)− p| =

∣∣∣∣∣
n∑

i=1

air
i − p

∣∣∣∣∣ > p−
n∑

i=1

|ai| > 0,

hence we get a contradiction!
Therefore f is a constant multiple of P (x) − p, so P (2x) − P (2t) is a constant multiple

of P (x) − p because they both have the same degree. By comparing leading coefficients we
get that P (2x) − P (2t) = 2n(P (x) − p). Comparing the rest of the coefficients we get that
P (x) = anx

n. If we let a = b = (1/an)1/n, then P (a) = P (b) = 1, so P (ab) must also be an

integer. But P (ab) = 1
an

. Therefore an = 1 and the proof is complete.

Solution 2: Assume P (x) =
∑n

i=0 aix
i. Consider the following system of equations

a0 = P (0)

ant
n + an−1t

n−1 + · · ·+ a0 = P (t)

2nant
n + 2n−1an−1t

n−1 + · · ·+ a0 = P (2t)

...

nnant
n + nn−1an−1t

n−1 + · · ·+ a0 = P (nt).

viewing akt
k as variables. Note that if P (t) is an integer, then by the hypothesis all the terms

on the right hand side of the equations are integers as well. By using Cramer’s rule, we can get
that akt

k = D/M , where D is an integer and M is the following determinant∣∣∣∣∣∣∣∣∣∣∣

1 0 0 · · · 0
1 1 1 · · · 1
1 2 4 · · · 2n

...
...

...
...

1 n n2 · · · nn

∣∣∣∣∣∣∣∣∣∣∣
6= 0.

Thus, if we let r be the smallest positive index such that ar 6= 0, we can express each t ∈ R
with P (t) ∈ Z in the form ( m

M ′
)1/r for some integer m, and where M ′ = M × ar is a constant.

We can choose L large enough such that P |R≥L
is injective, and for any larger N , the growth

order of the number of values in the form ( m
M ′

)1/r is N r, while the growth order of the number

of integers in [P (L), P (N)] is Nn, so r = n. Therefore P (x) is of the form anx
n + k. The

problem can be finished as in Solution 1.

8


