
16^a Olimpiada Mexicana de Matemáticas Concurso Nacional

Colima, Colima, 2002 Primer día

1. En una cuadrícula de 32×32 se escriben los números del 1 al 1024 de izquierda a derecha, con los números del 1 al 32 en el primer renglón, los del 33 al 64 en el segundo, etc. La cuadrícula se divide en cuatro cuadrículas de 16×16 que se cambian de lugar entre ellas como sigue:

Después, cada cuadrícula de 16×16 se divide en cuatro cuadrículas de 8×8 que se cambian de lugar del mismo modo; a su vez cada una de esas se divide y así sucesivamente hasta llegar a cuadrículas de 2×2 que se dividen en cuadros de 1×1 , los cuales se cambian de lugar del mismo modo. Al terminar estas operaciones, ¿qué números quedan en la diagonal que va de la esquina superior izquierda a la inferior derecha en la cuadrícula de 32×32 ?

- 2. Sean ABCD un paralelogramo y \mathcal{K} la circunferencia circunscrita al triángulo ABD. Sean E y F las intersecciones de \mathcal{K} con los lados (o sus prolongaciones) BC y CD, respectivamente (E distinto de B y F distinto de D). Demuestra que el circuncentro del triángulo CEF está sobre \mathcal{K} .
- 3. Sean n un entero positivo. ¿Tiene n^2 más divisores positivos de la forma 4k+1 o de la forma 4k-1?

Segundo día

4. Una ficha de dominó tiene dos números (no necesariamente diferentes) entre 0 y 6. Las fichas se pueden voltear, es decir, 4 5 es la misma ficha que 5 4. Se quiere formar una hilera de fichas de dominó distintas de manera que en cada momento de la construcción de la hilera, la suma de todos los números de las fichas puestas hasta ese momento sea impar. Las fichas se pueden agregar de la manera usual a ambos extremos de la hilera, es decir, de manera que en cualesquiera dos fichas consecutivas aparezca el mismo número en los extremos que se juntan. Por ejemplo, se podría hacer la hilera: 1 3 3 4 4 4, en la que se colocó primero la ficha del centro y luego la de la izquierda. Después de poner la primera ficha, la suma de todos los números es 7; después de poner la segunda, 11; después de la tercera, 19.

¿Cuál es la mayor cantidad de fichas que se pueden colocar en una hilera?

¿Cuántas hileras de esa longitud máxima se pueden construir?

- 5. Tres enteros distintos forman una terna compatible si alguno de ellos, digamos n, cumple que cada uno de los otros dos es, o bien divisor, o bien múltiplo de n. Para cada terna compatible de números entre 1 y 2002 se calcula la suma de los tres números de la terna. ¿Cuál es la mayor suma obtenida? ¿cuáles son las ternas en las que se obtiene la suma máxima?
- 6. Sea ABCD un cuadrilátero con AD paralelo a BC, los ángulos en A y B rectos y tal que el ángulo CMD es recto, donde M es el punto medio de AB. Sean K el pie de la perpendicular a CD que pasa por M, P el punto de intersección de AK con BD y Q el punto de intersección de BK con AC. Demuestra que el ángulo AKB es recto y que:

$$\frac{KP}{PA} + \frac{KQ}{QB} = 1.$$